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Abstract For most continental areas, the mechanisms leading to mantle fabrics responsible for the
observed anisotropy remain ambiguous, partially due to the lack of sufficient spatial coverage of reliable
seismological observations. Here we report the first joint analysis of shear-wave splitting measurements
obtained at stations on the Arabian and Nubian Plates adjacent to the Red Sea. More than 1100 pairs of
high-quality splitting parameters show dominantly N-S fast orientations at all 47 stations and
larger-than-normal splitting times beneath the Afro-Arabian Dome (AAD). The uniformly N-S fast
orientations and large splitting times up to 1.5 s are inconsistent with significant contributions from the
lithosphere, which is about 50-80 km thick beneath the AAD and even thinner beneath the Red Sea. The
results can best be explained by simple shear between the lithosphere and the asthenosphere associated
with northward subduction of the African/Arabian Plates over the past 150 Ma.

1. Introduction

In spite of numerous shear-wave splitting (SWS) studies, the mechanisms leading to observed seismic
anisotropy in a given study area are usually ambiguous, and reliable interpretation of SWS measure-
ments requires understanding tectonic history, mantle structure, plate motions, and results of geodynamic
modeling of mantle flow. It is often not clear whether anisotropy reflects a fossil lithospheric fabric or
asthenospheric flow. The region around the Red Sea is well suited for examining what are the important
controls, because this is a region with well-characterized plate motions, possible mantle plume effects, a
nascent ocean basin, and deformed lithosphere. These competing effects have been evaluated using data
from Arabia [e.g., Wolfe et al., 1999; Hansen et al., 2006] but without constraints from NE Africa, especially
Egypt. The recent availability of broadband seismic data from Egypt (Figure 1) provides a new opportunity
to investigate mantle dynamics and anisotropy-forming mechanisms.

The study area includes most of the Arabian Plate and the NE part of the Nubian Plate. The Red Sea and
the Afro-Arabian Dome (AAD) [Camp and Roobol, 1992] occupy the central part of the study area, and the
Arabian-Nubian Shield (ANS) comprises the core of the AAD (Figure 1). The basement fabrics of Arabia and
northern Nubia formed as a single lithospheric block in Neoproterozoic time associated with accretion of
juvenile arcs and back arc basins to form the ANS at ~900-630 Ma followed by collision of East and West
Gondwana about 630-600 Ma, through mostly east-west convergence. In the study area (Figure 1), the
dominant strike of basement structures including that of the suture zones ranges from NE-SW to NW-SE
and is mostly N-S on the ANS but is largely unknown beneath Egypt due to limited exposure [Berhe, 1990;
Stern and Johnson, 2010]. The crust of Africa west of the Nile is thought to be reworked older crust of the
Saharan metacraton [Abdelsalam et al., 2002], followed by orogenic collapse, delamination, and north
directed tectonic escape ~600-580 Ma [Stoeser and Camp, 1985; Avigad and Gvirtzman, 2009; Stern and
Johnson, 2010]. Mantle fabrics formed by Neoproterozoic tectonics and magmatism were likely modified
by opening of the Red Sea and the uplift of flanking regions beginning ~30 Ma [Bosworth et al., 2005;
Lazar et al., 2012]. We have some idea of how thick the lithosphere is beneath western Arabia but not NE
Africa. Hansen et al. [2007] used S wave receiver functions and Gravity Recovery and Climate Experiment
gravity data and concluded that the lithosphere thickness is ~50-80 km near the coast and thickens to
~120 km beneath the eastern edge of the ANS [Hansen et al., 2007, Figures 5 and 6], which is at a distance
of about 500 km from the Red Sea.
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Figure 1. A topographic relief map of the study area showing the seismic
stations (triangles) used in the study and shear-wave splitting mea-
surements (red bars) plotted above ray-piercing points at the depth

of 150 km. The orientation of the bars represents the fast orientation,

and the length indicates the splitting time. Brown areas are covered

by Cenozoic volcanic rocks. The dashed blue line is a great circle arc
approximately along the Red Sea axis, the dashed purple line outlines
the northern part of Afro-Arabian Dome, and the dashed black line out-
lines the Arabian-Nubian Shield [Camp and Roobol, 1992]. The inset shows
distribution of earthquakes (blue circles) used in the study.

The direction and strength of mantle
flow beneath the Red Sea and adja-
cent Arabian and Nubian Plates were
investigated by a number of seismic
anisotropy [Wolfe et al., 1999; Levin
and Park, 2000; Schmid et al., 2004;
Hansen et al., 2006; Levin et al., 2006;
Kaviani et al., 2011, 2013] and geody-
namic modeling [Conrad and Behan,
2010; Forte et al., 2010; Faccenna et al.,
2013] studies. Figure 2 shows results
from the previous studies. Except

for a few of them [Wolfe et al., 1999;
Hansen et al., 2006], most previous
SWS studies focused on the vicin-

ity of the Dead Sea Transform Fault
separating the Nubian and Arabian
Plates. Based on SWS measurements
at eight stations in southern Saudi
Arabia, Wolfe et al. [1999] reported
dominantly N-S fast orientations
(measured clockwise from the north)
with larger-than-normal splitting
times. The models that they proposed

include N-S trending lithospheric fabrics formed by E-W Neoproterozoic convergence, northward absolute
plate motion (APM) of the Arabian Plate, and northward asthenospheric flow from a mantle plume beneath
Afar. Hansen et al. [2006] measured SWS parameters at about 20 stations in Arabia (Figure 2). Similar to Wolfe
et al. [1999], they found dominantly N-S fast orientations and attributed the observed seismic anisotropy

to a combined effect of two flow systems: a northeastward flow from GPS-determined APM of the Arabian
Plate [Reilinger et al., 1997] and a NW oriented flow along the strike of the Red Sea from the Afar plume.

Using SWS parameters and geodetic measurements as constraints, Faccenna et al. [2013] investigated man-
tle flow beneath Arabia and northern Nubia. The model that fits the observed seismic anisotropy in Arabia
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Figure 2. Spatially averaged shear-wave splitting parameters from this
study and station-averaged splitting parameters from previous studies
[Wolfe et al., 1999; Levin and Park, 2000; Schmid et al., 2004; Hansen et al.,
2006; Levin et al., 2006; Kaviani et al., 2011, 2013]. Station-averaged splitting
parameters to the southeast of the gray dashed line are plotted in Figures
3d and 3e.

the best invokes slab pull, upwelling
from the lower mantle beneath
southern Africa, and a N-S oriented
zone of thinned lithosphere (“litho-
spheric channel”) beneath the AAD
that directs flow from a mantle plume
beneath Afar. Other models proposed
by Faccenna et al. [2013] use differ-
ent assumptions about the relative
roles of slab pull and mantle hetero-
geneities. Most of these models and
models from other geodynamic mod-
eling studies [Forte et al., 2010; Conrad
and Behan, 2010; Kreemer, 2009] pre-
dicted that the flow direction beneath
southern Arabia is more northeast-
erly than that beneath the northern
part, mostly due to the influence of
flow from the Afar mantle plume to
the south and the stronger influence
of northward subduction in the north.
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Figure 3. Cross-section views of (a) surface elevation and (b-e) Egyptian National Seismic Network
station-averaged shear-wave splitting parameters. Figures 3b and 3c are (ENSN) for the period of late 2010 to

fast o'rientations and splitting times, respectively, of all the measuremer?ts, the end of 2012. The epicentral dis-
and Figures 3d and 3e are measurements beyond the Red Sea, located in .
the area to the southeast of the Red Sea perpendicular line in Figure 2. tance used for PKS, SKKS, and SKS is
Circles represent data from this study, and triangles from previous stud- 120°-180°, 95°-180°, and 84°-180°,
ies shown in Figure 2. The horizontal lines in Figures 3b and 3d show the respectively [Liu and Gao, 2013].

mean (central lines) and mean plus/minus the standard deviation. .
The splitting parameters were mea-

sured and ranked using the procedure developed by Liu [2009] and Liu and Gao [2013] based on the
transverse component energy minimization technique [Silver and Chan, 1991]. The seismograms were
filtered in the frequency band of 0.04-0.5 Hz, and the XKS time window used to compute the splitting
parameters starts at 5 s before and ends at 20 s after the predicted XKS arrival times. A manual check was
applied to adjust the XKS window and to verify the automatic-ranking results to ensure that no high-quality
events were ignored and no low-quality results were selected [Liu and Gao, 2013].

3. Results

A total of 1144 well-defined nonnull SWS measurements are obtained at 47 stations (Figure 1). Null mea-
surements are characterized by the lack of observable energy on the transverse component as a result of the
back azimuth directions being either parallel or perpendicular to the fast orientation or the medium trav-
eled by the XKS phase being isotropic [e.g., Silver and Chan, 1991]. Two or more null events with nonparallel
or orthogonal back azimuths indicate the paucity of anisotropy. We observed clear splitting at all stations in
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the study area, and thus, the null measurements are not used in the discussions below. In addition, we do
not observe clear systematic variations of the splitting parameters as a function of back azimuth, suggest-
ing that a single layer of anisotropy with a horizontal axis of symmetry is adequate to represent the SWS
measurements. To better visualize the measurements, we compute the coordinates of ray-piercing points at
150 km depth and spatially average the SWS parameters in consecutive circles with a radius of 1°. The dis-
tance between the center of neighboring circles is 1°. The resulting spatial distribution of the measurements
is shown in Figure 2, in which station-averaged measurements from previous studies are also plotted.

The station-averaged results are also displayed against the perpendicular distance to the Red Sea axis
(Figure 3), for the purpose of identifying subtle spatial variations of the splitting parameters. The most
remarkable feature of the measurements (Figures 2 and 3) is the almost consistently N-S fast orientations
in the entire study area. This is especially true for the areas to the NE and SW of the Red Sea (Figure 3d).
The splitting times are the largest (about 1.5 s) in the study area along the axial region of the AAD (which is
centered approximately along the 42°E longitudinal line) and decrease gradually toward the NE and SW.

4, Discussion

The uniform N-S fast orientations and the systematic spatial variation of the splitting times have several
important implications on mantle flow models and on the formation mechanisms of seismic anisotropy
beneath the study area, including

1. The uniform N-S fast orientations, large splitting times observed in areas with thin lithosphere, and appar-
ently spatially varying dominant orientations of basement fabrics [Berhe, 1990; Stern and Johnson, 2010]
make it unlikely for the lithosphere to be the main source of the observed anisotropy. A lithosphere origin
predicts that areas with thin lithosphere such as the area between the Red Sea and the axial area of the
AAD [Hansen et al., 2007; Chang and Van der Lee, 2011] should have small splitting times, not the observed
large splitting times. To produce the 1.5 s splitting time observed on the AAD with a commonly accepted
mantle anisotropy of 4% [Mainprice and Silver, 1993], the required layer thickness is about 170 km, which
is more than 2 times of the thickness of the lithosphere beneath the AAD [Hansen et al., 20071]. If we use
the shear-wave anisotropy value of 2.64% measured from upper mantle kimberlite nodules acquired
on the Kaapvaal craton [Ben-Ismail et al., 2001], the required thickness is as large as 255 km. Addition-
ally, spatially varying fast orientations and reduction in splitting times are expected beneath the Sahara
metacraton due to disturbance of the accretion-related lithospheric fabrics by the tectonic reactivation
events and lithospheric delamination. Such expected changes are not observed. Because fabric directions
on a lithospheric scale beneath the study area especially beneath Egypt is poorly known, our data cannot
completely exclude contributions from the lithosphere to the N-S directed anisotropy.

2. Magmatic dikes parallel to the Red Sea contribute insignificantly to the observed anisotropy. The dikes
should lead to Red Sea parallel fast orientations and large splitting times in the Red Sea basin, neither of
which is observed (Figure 2). The lack of a significant amount of dikes in the lithosphere is consistent with
the notion that the Red Sea was the product of passive rifting, probably as a result of slab pull along the
subduction zones to the north and northeast [Stern and Johnson, 2010].

3. Neither the fast orientations nor the splitting times support the existence of a flow system along a litho-
spheric channel beneath the Red Sea. It has been proposed that such a channeled flow, when combined
with the northeastward APM of Arabia, could give rise to the N-S fast orientations observed on Arabia
[Hansen et al., 2006]. In order to produce the N-S fast orientations on the AAD, the Red Sea parallel flow
system must extend beyond the surface expression of the Red Sea, probably on both sides of it. If this is
the case, one would expect that the fast orientations observed on the Egyptian side would be parallel to
the strike of the Red Sea, due to a lack of a NE directed APM-driven flow system. Additionally, if the two
flow systems produce lattice-preferred orientation (LPO) at different depths, azimuthally varying split-
ting parameters are expected [Silver and Savage, 1994]. None of these predictions are consistent with the
observed splitting parameters.

4. Anisotropy with a uniform N-S fast orientation observed beneath the AAD is unlikely the result of chan-
neled flow beneath the AAD. The coexistence of N-S directed anisotropy and a zone of low-seismic
velocity was proposed to be the result of mantle flow beneath the thinned AAD lithosphere [Wolfe et al.,
1999; Chang and Van der Lee, 2011]. The fact that N-S fast orientations are also observed outside the AAD
in Egypt places doubts on this interpretation (unless the off-AAD N-S fast orientations are coincidental).

ELSHEIKH ET AL.

©2014. American Geophysical Union. All Rights Reserved. 2379



@AG U Geophysical Research Letters 10.1002/2014GL059536

Acknowledgments

Data used in the study were obtained
from the ENSN and the IRIS DMC. We
thank R. J. Stern and G. R. Keller for
helpful discussions and comments.
This study was partially supported by
the Egyptian Science and Technology
Development Fund and by the United
States National Science Foundation
under grant EAR-1009946.

The Editor thanks two anonymous
reviewers for their assistance in
evaluating this paper.

In the absence of an existing model that can satisfactorily explain the spatial distribution of the SWS param-
eters, we search for other anisotropy-forming mechanisms in the study area that can lead to the observed
distribution. Numerous studies demonstrated that relative to Eurasia, the African Plate has been moving
northward since at least 150 Ma, most probably driven by the subduction of the Neotethys oceanic slab
[Dercourt et al., 1986; Reilinger and McClusky, 2011]. From 59 to 0 Ma, the African Plate moved more than
1200 km toward Eurasia without significant changes in the direction of motion but with variable plate veloc-
ities [McQuatrrie et al., 2003; Reilinger and McClusky, 2011]. From 59 to 25 Ma, the Nubia-Arabian Plate moved
northward at about 32 mm/yr. The rate for Nubia reduced by more than 50% since 25 Ma, probably due

to the collision of Africa and Eurasia which increased resistance to subduction [Jolivet and Faccenna, 2000]
or the rifting along the Red Sea which reduced the north-northeastward pull on Nubia from the Arabian
section of the subducting Neotethys slab [Reilinger and McClusky, 2011]. Numerical [e.g., Lithgow-Bertelloni
and Richards, 1998; Conrad and Hager, 2001; Behn et al., 2004] and laboratory [e.g., Funiciello et al., 2006]
studies suggest the existence of subduction parallel LPO beneath the horizontal portion of subduct-

ing plates. The LPO is induced by the relative movement between the partially coupled lithosphere and
asthenosphere, as well as by trench rollback [Conrad and Hager, 2001]. We propose that the observed seis-
mic anisotropy with N-S fast orientations in Arabia and northern Nubia represents mantle fabrics induced in
the boundary layer by the long-term northward subduction of the African (before 24 Ma) and Nubian and
Arabian Plates (after 24 Ma) beneath Eurasia. Under this model, the large splitting times observed beneath
the axial area of the AAD can be explained by concentration of LPO associated with lithospheric thinning.
Such thinning was suggested from numerous seismic tomography studies [e.g., Chang and Van der Lee,
20111. The fact that the fast orientations are almost perfectly parallel to the direction of subduction implies
that beneath the study area, subduction-induced LPO is much stronger than that produced by other pro-
cesses, such as westward drift of the Earth’s lithosphere [Doglioni et al., 2007], and the opening of the Red
Sea, which would lead to a more northeasterly fast orientation on Arabia.

5. Conclusions

For the first time, shear-wave splitting parameters are measured on both the Nubian and Arabian Plates
adjacent to the Red Sea. Dominantly N-S fast orientations are observed at virtually all the 47 stations,
which, when combined with the systematic spatial variation of splitting times, are inconsistent with previ-
ously proposed anisotropy-forming models invoking lithospheric fabrics, radial flow from an active mantle
plume beneath Afar, or channeled flow from Afar beneath the Red Sea or the Afro-Arabian Dome. Con-
versely, the observations can best be explained by olivine LPO developed at the boundary layer between
the lithosphere and the asthenosphere induced by the northward movement of the African Plate since at
least 150 Ma.
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