
1.  Introduction
It has long been recognized that the P-to-s converted phases from the core-mantle boundary such as SKS, PKS, 
and SKKS (hereafter referred to as XKS) split into orthogonally polarized fast and slow components in azimuth-
ally anisotropic media (Ando et al., 1983; Long & Silver, 2009; Savage, 1999; Silver & Chan, 1991). The two 
splitting parameters, the polarization orientation of the fast component (fast orientation or ϕ) and the time separa-
tion (splitting time or δt) between the two waves, reveal the orientation and splitting magnitude of the anisotropy, 
respectively. Over the past several decades, the shear wave splitting (SWS) analysis technique has been widely 
used to delineate azimuthal anisotropy in the upper mantle, where lattice preferred orientation of crystallographic 
axes of main constitute minerals such as olivine is the dominant cause of the observed anisotropy (Katayama & 
Karato, 2006; Savage, 1999; Silver, 1996; Zhang & Karato, 1995).

Several different methods have been utilized to measure the splitting parameters of the XKS phases, among 
which the transverse energy minimization method (Silver & Chan, 1991) is arguably the most reliable one for its 
stability for noisy data (Vecsey et al., 2008). In this method, a grid search procedure is applied to find the opti-
mal pair of splitting parameters (ϕ, δt) corresponding to the minimum XKS energy on the corrected transverse 
component. Numerous SWS studies suggest that in order to obtain reliable splitting measurements, an essential 
step is to visually verify all the measurements (e.g., Liu & Gao, 2013), as demonstrated in recent studies in North 
America (e.g., Liu et al., 2014; Yang et al., 2016, 2017; Yang et al., 2021). Due to the ever-increasing number 
of stations established around the world and the resultant exponential increase in the amount of data available 
for SWS analysis, this laborious task is increasingly time-consuming, and therefore alternate time-efficient yet 
reliable approaches are needed.
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In recent years, applications of machine learning (ML) based techniques on various scientific problems have 
dramatically increased, and over-human performance has been shown in diverse areas. Especially after AlphaGo 
showed unexpectable high performance (Silver et al., 2016), ML became widely known and attracted the atten-
tion of researchers from different fields. In geophysical research, ML has been applied in numerous studies 
and demonstrated considerable potential. Such applications include earthquake early warning (Li et al., 2018), 
earthquake detection and magnitude estimation (Lomax et al., 2019; Mousavi & Beroza, 2020; Perol et al., 2018), 
seismic phase picking (Dokht et al., 2019; McBrearty et al., 2019; Ross et al., 2018; Woollam et al., 2019; Zhu & 
Beroza, 2018), event classification (Linville et al., 2019; Titos et al., 2018), first-motion polarity determination 
(Ross et al., 2018), seismic denoising (Zhu et al., 2019), and earthquake prediction (Mignan & Broccardo, 2019; 
Rouet-Leduc et  al.,  2017). ML-based applications on structural seismological problems such as teleseismic 
tomography, receiver functions, and SWS analyses are relatively rare and are starting to takeoff (e.g., Bianco 
et al., 2019; Garcia et al., 2021).

In this study we design a CNN to classify the automatically determined SWS splitting parameters measured 
based on the set of procedures outlined in Liu and Gao (2013) into acceptable and unacceptable ones. Tradi-
tionally such kind of grouping was conducted by trained human operators and was the most time-consuming 
step in SWS analysis (e.g., Liu & Gao, 2013), although efforts have been made to make such processes fully 
automatic for both teleseismic (Link et al., 2022; Teanby et al., 2004) and local S-wave (Peng & Ben-Zion, 2004) 
splitting measurements with promising results. While many SWS studies group the measurements in to “good,” 
“fair,” “unacceptable,” and “null,” the vast majority of them use the first two categories (which are collectively 
called “acceptable” in this study) indistinguishably for interpretation. For the “nulls,” which are characterized 
by a lack of XKS energy on the original transverse component while strong XKS energy appears on the radial 
component (e.g., Silver & Chan, 1991), we identify them in the pre-processing stage. The CNN is trained using 
published SWS measurements verified by human operators and is tested using splitting measurements obtained 
using synthetic data. The trained CNN is applied to data from 127 stations in south central Alaska and the results 
are compared with those reported in a recent study (Yang et al., 2021). To our knowledge, this is the first time 
when a ML-based technique is applied to SWS analysis.

2.  Training Data Set and Preprocessing
Our CNN is trained and verified using 86,903 published human-labeled XKS SWS measurements recorded by 
1,108 stations from Liu et al. (2014), Yang et al. (2016) and Yang et al. (2017) for the contiguous United States 
and adjacent areas (Figure 1). This data set was measured, manually verified, and ranked based on the procedures 
in Liu and Gao (2013), and contains 8,117 well-defined (ranks A and B) and 78,786 not well-defined (rank C 

Figure 1.  Distribution of seismic stations (red triangles; Liu et al., 2014; Yang et al., 2016, 2017) used for training the 
convolutional neural network.
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and rank N, which are for null measurements). The procedures start with an automatic SWS measuring step built 
based on the minimization of transverse energy method of Silver & Chan (1991). The automatically determined 
measurements are then auto-ranked based on the XKS signal to noise ratios on the original radial, original trans-
verse, and the corrected transverse components (Liu et al., 2008). All the resulting measurements and their ranks 
are subsequently manually screened to validate the results based on the following criteria: goodness of the fitting 
between the fast and slow components, the linearity of the particle motion pattern, the robustness and unique-
ness of the minimum value on the contour of remaining energy on the corrected transverse components, and the 
strength of the XKS arrival on the original radial and transverse components. If necessary, the XKS time window, 
the band-pass frequency, and the automatically determined ranking are manually adjusted to exclude non-XKS 
arrivals in the XKS window and to improve the signal to noise ratio.

The stations cover different tectonic areas of the North America (Figure 1) so that our training and verification 
data contain measurements from various geological backgrounds. Additionally, the data set contains stations with 
both azimuthally invariant and azimuthally varying individual measurements, indicating the presence of simple 
and complex anisotropy, respectively. The splitting measurement procedure takes the original radial and trans-
verse components as the input data, grid-searches for the optimal splitting parameters, and generates corrected 
radial and transverse components. The optimal pair of splitting parameters produces a corrected transverse 
component that has the minimum XKS energy among all the candidate pairs of the splitting parameters. Our 
CNN takes all the four seismograms as input data and groups the optimal pair of parameters as either acceptable 
(ranks A and B) or unacceptable (ranks C and N). After testing with various combinations of the length and the 
onset of the time window for the four seismograms, a 50 s window centered at the theoretical arrival time of the 
XKS phase predicted based on the IASP91 Earth model is used in the study.

Acceptable measurements are labeled as array [1 0] and unacceptable measurements are labeled as [0 1]. Because 
the number of acceptable measurements is significantly greater than that of the unacceptable data in the training 
data set, to avoid overfitting, we balance the data set by setting different class weights to the two sets of data 
(nine for the acceptable ones and one for the unacceptable ones), which is a common practice in similar situations 
(Japkowicz & Stephen, 2002). After random shuffling, 80% of the measurements are used for training and 20% 
for validation.

3.  Structure and Training of the CNN
The CNN is built on Keras which is a high-level neural networks application programming interface (Gulli & 
Pal, 2017). Following Perol et al. (2018), we designed a CNN with eight 1-D convolutional layers followed by a 
full-connect layer. For each splitting measurement, the input for CNN includes four seismic waveforms each with 
1,000 nodes (50 s seismic waveforms with a sampling rate of 20 Hz) in length. Rectified Linear Unit is applied as 
the activation function between each layer (Nair & Hinton, 2010). The output is the probability of the acceptable 
and unacceptable measurements (Table S1 and Figure S1 in Supporting Information S1). The probability is given 
by Softmax which is a popular activation function for classification problems (Goodfellow et al., 2016). The 
equation can be shown as:

𝑝𝑝(𝑥𝑥)𝑖𝑖 =
𝑒𝑒𝑥𝑥𝑖𝑖

∑2

𝑗𝑗=1
𝑒𝑒𝑥𝑥𝑗𝑗

� (1)

where j = 1, 2 and i = 1, 2 represent the 2 nodes of the final layer, and 𝐴𝐴 𝐴𝐴(𝑥𝑥)1 and 𝐴𝐴 𝐴𝐴(𝑥𝑥)2 represent the probability 
of acceptable and unacceptable measurements, respectively. If the probability of the acceptable measurements is 
greater than a threshold, this measurement is considered as an acceptable one. Because this is a bi-class classifi-
cation problem and the training data set is balanced, the threshold probability of acceptable measurements used 
in this study is 0.5.

To numerically reveal the difference between the CNN-predicted and human-labeled results, the cross-entropy 
loss is applied as the cost function (Goodfellow et al., 2016). The equation can be shown as:

� = −
∑�

�=1
�� log (��) (� = 2)� (2)
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where n is 2 representing the two types of measurements (acceptable and unacceptable), p is the probability of 
the CNN predicted result and q is the human-labeled result. The weights of the CNN are updated to minimize the 
cost function Adamalgorithm (Kingma & Ba, 2014) with a learning rate of 0.001 during each training itera tion. 
In each iteration, 100 measurements are randomly selected to train the CNN and each measurement in the training 
data set is used for 64 times. The training history of accuracy and loss value (Figure S2 in Supporting Infor-
mation S1) show a high level of similarity between the trends of the curves for the training and validation data 
sets, suggesting a low probability of overfitting. In addition, both curves become nearly flat at the highest epoch 
numbers, which suggests a low possibility of underfitting.

4.  Testing With Synthetic SWS Measurements
Two sets of synthetic SWS measurements are generated based on Kong et al. (2015) to test the performance of 
the CNN. Firstly, the radial component of a pre-splitting XKS wave is defined as

𝑅𝑅(𝑡𝑡) = 𝐴𝐴0sin(2𝜋𝜋𝜋𝜋𝜋𝜋)𝑒𝑒
−𝛼𝛼𝛼𝛼� (3)

where 𝐴𝐴 𝐴𝐴0 = 5000 is the amplitude of the pre-splitting XKS wave, 𝐴𝐴 𝐴𝐴 = 0.125 Hz is the frequency, and 𝐴𝐴 𝐴𝐴 is the 
decaying factor which randomly changes from 0.1 to 0.5. After penetrating the anisotropic layer, which has a 
fixed ϕ of 0° and a randomly assigned 𝐴𝐴 𝐴𝐴𝐴𝐴 ranging from 0.5 to 2.0 s, the shear wave splits into the fast and slow 
components

𝑆𝑆𝑓𝑓 (𝑡𝑡) = 𝑅𝑅(𝑡𝑡)cos(𝜃𝜃)� (4)

and

𝑆𝑆𝑠𝑠(𝑡𝑡) = −𝑅𝑅(𝑡𝑡 − 𝛿𝛿𝛿𝛿)sin(𝜃𝜃)� (5)

where 𝐴𝐴 𝐴𝐴𝑓𝑓 and 𝐴𝐴 𝐴𝐴𝑠𝑠 are the fast and slow waves, and 𝐴𝐴 𝐴𝐴 is the angle between ϕ and the back azimuth (BAZ) of the 
event. The epicentral distances of the events are randomly assigned in the range of 90°–120°, and the focal depths 
vary from 20 to 50 km. Finally, 𝐴𝐴 𝐴𝐴𝑓𝑓 and 𝐴𝐴 𝐴𝐴𝑠𝑠 are projected to the north-south and east-west components and random 
noise is added to generate synthetic seismograms for SWS measurements. The signal-to-noise ratio (SNR) is 
defined as max(R(t))/max(N(t)), where N(t) is the trace of the random noise.

It can be demonstrated mathematically that the energy on the original transverse component and the reliability 
of the resulting splitting parameters are dependent on 𝐴𝐴 𝐴𝐴 , which is the angular difference between the BAZ and 
the fast orientation (Silver & Chan, 1991). In the modulo-90° domain, close-to-null measurements, which are 
characterized by hardly observable XKS energy on the original transverse component, are dominant if 𝐴𝐴 𝐴𝐴 is less 
than 15° or greater than 75°. The relationship between 𝐴𝐴 𝐴𝐴 and the reliability of the measurements, as well as the 
influence of 𝐴𝐴 𝐴𝐴 on CNN's ability to correctly separate the acceptable measurements from the unacceptable ones, 
can be quantified using synthetic data.

For this purpose, we produce 72 groups of synthetic seismograms with SNR ranging from 4 to 10. Each group 
has 1,000 measurements. The BAZ (which equals to 𝐴𝐴 𝐴𝐴 because the fast orientation is set as 0° in the model) of the 
nth group is (n-1)*5°. The other parameters, including the SNR, used for generating the synthetic seismograms 
in Equations 3–5 are the same among the groups. The same data processing procedures used to generate the 
uniform SWS database for North America (Liu et al., 2014; Yang et al., 2016, 2017) are applied to the synthetic 
waveforms to automatically determine the splitting measurements, which are then grouped by the trained CNN 
into acceptable and unacceptable categories. The results suggest that the number of CNN-accepted measurements 
reduces rapidly when the BAZ approaches 0° and 90° in the modulo−90° domain (Figure 2a), due to the weak 
XKS energy (relative to that of the noise) on the original transverse component. Such measurements are either 
ranked as C or N by human operators, depending on the noise level and the preference of the operators. When the 
BAZ is ≥15° from the fast or slow orientations in the modulo−90° domain, clear XKS energy is present on the 
original transverse component, and consequently the trained CNN successfully identified almost all the measure-
ments with a rate of success >99% (Figure 2a).
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To test the performance of the CNN on data with different SNR values, 20 groups of synthetic SWS measure-
ments are generated, each with 1,000 measurements. The SNR of each group varies from 1 to 10 with an interval 
of 0.5. Based on the results of the first test (Figure 2a), the BAZ of each of the events used for the test is at least 
15° from the fast or slow orientation. The results show that the success rate of CNN is over 90% for SNR ≥2.5 
and over 97% when SNR ≥6.5 (Figure 2b).

5.  Application to SWS Measurements in South Central Alaska
We next apply the trained CNN to broadband seismic data in south central Alaska recorded by 127 stations with 
variable recording period from 1988 to October 2019. The procedures to request (from the Data Management 
Center of the Incorporated Research Institutions for Seismology) and preprocess the XKS data follow those 
described in Liu and Gao (2013) and are identical to those used by Yang et al. (2021). In total 19,960 pairs of 
splitting parameters are obtained at 127 Stations (Figure 3a). The SNR based auto-ranking procedure of Liu 
et  al.  (2008) ranked 6,314 measurements from 127 stations as potentially acceptable (Figure 3b) and 13,646 
measurements as unacceptable. Note that the Liu et al. (2008) approach was intentionally designed for excluding 
only the measurements that are impossible to be acceptable, for the purpose of reducing the amount of effort for 
the subsequent step of visual screening and at the same time minimizing the risk of missing potentially acceptable 
measurements.

The trained CNN is then applied to classify the 6,314 pairs of splitting parameters (Figure 3b). When a threshold 
value of 0.5 for the probability to be acceptable is used, a total of 2668 pairs from 124 stations are determined 
as acceptable (Figure 3c). We apply three set of conditions to refine the CNN-selected results. These conditions 
are necessary to exclude false positives caused by limitations in the current CNN, as described in Section 6.2 
below. First, because the synthetic tests show that a measurement cannot be reliably classified by CNN (and 
human operators, as discussed below) when the difference between the BAZ and the fast orientation is less than 
∼15° (Figure 2a), we excluded such near-null measurements, and the remaining data set contains 2387 pairs of 
measurements from 122 stations (Figure 3d). Second, measurements with large standard deviations (≥15° for ϕ 
or ≥1.5 s for δt) are excluded, resulting in a total of 1,751 pairs of measurements from 118 stations (Figure 3e). 
Third, because measurements with large splitting times are rarely found in SWS studies in Alaska and elsewhere 
and are frequently associated with erroneously determined splitting parameters, we remove the 221 pairs (or 
12.6%) of measurements with splitting times ≥2.0 s, leaving 1,530 pairs of measurements from 115 stations in 
the final data set (Figure 3f).

Figure 2.  Performance tests of the convolutional neural network (CNN) using synthetic data set. (a) 72 groups of synthetic 
shear wave splitting (SWS) measurements with different back azimuths. (b) 20 groups of synthetic SWS measurements with 
different signal-to-noise ratios.
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Understandably, as more conditions are applied to the CNN classified measurements, the number of remaining 
measurements reduces, while the consistency among the measurements at the stations increases (Figures 3c–3f). 
Note that due to the existence of complex anisotropy especially in the central and southern portions of the study 
area (Yang et  al.,  2021), variability among the measurements at the same stations is present at some of the 
stations. Such a variability does not necessarily indicate inaccurately determined results but are mostly the result 
of azimuthal and piercing-point variations of the splitting parameters. The former is usually an indicator of 
complex anisotropy (Rümpker & Silver, 1998; Silver & Savage, 1994), and the latter is the result of a station 
being located at the boundary of two or more regions with different characteristics of anisotropy (Alsina & 
Snieder, 1995; Jia et al., 2021).

Figure 3.  SWS measurements (red bars) in south central Alaska plotted at the recording stations (blue triangles). The orientation of the bars represents the fast 
orientation, and the length is proportional to the splitting time. (a) All the measurements recorded by stations in the study area. (b) Results of auto-ranking based 
on the approach of Liu et al. (2008) which was designed as a pre-screening step to reduce human workload in the subsequent manual screening step. (c) Results of 
convolutional neural network with a threshold of 0.5. (d) Same as (c) by after removing measurements for which the angular difference between the back azimuth and 
the fast or slow wave polarization orientations is smaller than 15°. (e) Same as (d) but after removing measurements with standard deviation of ϕ > 15° or standard 
deviation of δt > 1.5 s. (f) Same as (e) but after removing measurements with δt > 2.0 s. The number of measurements (N) and the number of stations (Nst) are shown 
in the lower right corner of each plot.
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6.  Discussion
6.1.  Comparison With Human-Determined Measurements

After manually verifying the automatically ranked measurements (Figure 3b), Yang et al. (2021) obtained 971 
measurements from 106 stations, among which 952 (98.1%) are within the 2668 measurements classified as 
acceptable by CNN before the application of the three conditions (Figure 3c). This suggests that if a human 
operator uses the CNN accepted results (Figure  3c) rather than results from the SNR based ranking system 
(Figure 3b)  as the starting point for manual verification, an approximately 60% reduction in the number of meas-
urements to be verified will be achieved, and only less than 2% of the measurements will be missed.

To objectively compare the human (Yang et al., 2021) and CNN determined final results (Figure 3f), the same set 
of three conditions applied to the CNN-accepted data are applied to the 971 human-determined measurements, 
and the remaining human-determined data set contains 865 measurements from 102 stations (Figure 4a), among 
which 816 from 100 stations are in the final data set that CNN determined (Figure 3f). In other words, CNN 
missed merely 49 (5.7%) of the human determined measurements. Most of the missed measurements are in Area 
B (Figure 4a) where the interaction of two flow systems with nearly orthogonal directions leads to weak anisot-
ropy with small splitting times (Yang et al., 2021).

In spite of the fact that the station averaged splitting parameters from the CNN and human determined results 
show a high similarity with a cross-correlation coefficient (XCC) of 0.9631 for ϕ and 0.7947 for δt (Figures 4b 
and 4c), the number of measurements in the final CNN-determined data set (Figure 3f) is about twice as many 
as that in the human-determined data set. This difference might be caused by the fact that the human opera-
tors  applied a stricter set of standards when verifying the measurements. To test this possibility, we computed 
station averages using only the CNN determined measurements that were not selected by the human operators. 

Figure 4.  (a) Comparison of human-determined (blue bars; Yang et al., 2021) and convolutional neural network (CNN)-selected (red bars) shear wave splitting 
measurements in south central Alaska. Green bars are measurements accepted by both CNN and human operators. All the measurements are plotted above the XKS 
ray-piercing points at 200 km deep which is the most likely depth of the anisotropic layer (Yang et al., 2021). The contour lines show the depth of the subducted Pacific 
slab, and the thick dashed lines separate four regions (a–d) with different patterns of splitting measurements (Yang et al., 2021). The CNN results are the same as those 
shown in Figure 3f. (b) Cross-plot of human and CNN determined station-averaged ϕ measurements. The black bars are the standard deviation. (c) Same as (b) but for 
station-averaged δt measurements. (d and e) are respectively the same as (b and c) but the CNN station averages were computed using results that were determined by 
CNN as acceptable but rejected by the human operators. XCC: Cross-correlation coefficient.
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The results (Figures 4d and 4e) show a reduced similarity between the two sets of data, with reduced XCC values 
of 0.8814 for ϕ and 0.4463 for δt. The most obvious explanation for this reduced similarity is that some measure-
ments with a marginal quality were classified as acceptable by CNN but were rejected by the human operators.

6.2.  Comparison With a Fully Automated Non-Machine Learning SWS Measurement Approach

Several non-machine learning methods have been proposed to measure SWS parameters in a completely auto-
mated manner (e.g., Link et al., 2022; Teanby et al., 2004). Here, we choose the latest one, SplitRacerAUTO (Link 
et al., 2022), to compare with the CNN-based approach proposed in this study. The MATLAB-based SplitRac-
erAUTO can automatically select the XKS time window and categorize the splitting measurements. The same 
data set in Alaska is applied to test the performance of SplitRacerAUTO against our ML-based approach. To be 
consistent with the parameters used in our preprocessing step, we used the frequency range of 0.04–0.5 Hz for the 
band-pass filter in SplitRacerAUTO, and kept all the other parameters the same as the default values. The results 
show that this method accepts 950 measurements from 110 stations, and 467 of them (48.1%) are contained in 
results of Yang et al. (2021). After applying the same constraints that produced Figure 3f, there are 586 meas-
urements remained and 404 (46.7%) of them are in Yang et al. (2021). In other words, the automated procedure 
missed 53.3% of the human-determined measurements, while our CNN-based approach merely missed 5.7% of 
them. The results of the automatically determined splitting parameters and results after various constraints are 
plotted in Figure S4 of Supporting Information S1 using the same style as Figure 3 for easy comparison. Simi-
larly, comparisons of human and SplitRacerAUTO determined measurements similar to Figure 4 are plotted in 
Figure S5 of Supporting Information S1. Comparing Figures 4 and S5 in Supporting Information S1, it is clear 
that the CNN-based approach resulted in a significantly greater number of measurements than SplitRacerAUTO, 
especially in areas with weaker anisotropy such as Area B in Figures 4 and S5 in Supporting Information S1.

6.3.  Limitations of the Current CNN and Suggested Next Steps

In spite of the satisfactory performance of our CNN on both synthetic and real data, a major drawback of the 
current CNN is that it does not have the capability to adjust the data processing parameters including the begin-
ning and end times of the XKS window and the bandpass filtering frequencies. For a small portion of the meas-
urements, such adjustments are required in order to obtain reliable results. For instance, if the epicentral distance 
is smaller than 90°, part of the S wave energy can be included in the XKS window, leading to unreliable results. 
Therefore, it is necessary to design and train a CNN that can automatically recognize the necessity and make 
such adjustments. One of the approaches is to design a separate pre-processing CNN for picking the arrival time 
of the XKS arrival, similar to those designed for picking the onset time of P or S waves from local events (Zhu 
& Beroza, 2018). Additional work is needed to find the optimal ending time of the XKS window, and to detect 
the dominant frequency range of the noise and perform band pass filtering to enhance the SNR when strong 
noise is present. Alternatively, the optimal XKS window can be determined during the pre-processing stage 
using non-CNN based approaches such as the time-frequency spectrum technique recently proposed by Link 
et al. (2022).

7.  Conclusions
In this study, we have established a CNN to automatically classify teleseismic SWS measurements. The CNN is 
trained by published human-labeled datasets and tested using synthetic SWS measurements to evaluate its perfor-
mance against different levels of noise and its dependence on the difference between the fast orientation and the 
back-azimuth of the events. When the SNR is greater than 6.5, more than 97% of the non-null synthetic measure-
ments can be correctly accepted by the CNN. Application of the CNN to data from south central Alaska shows 
that it can classify almost all human-accepted measurements (98.1%) as acceptable when a threshold probability 
of 0.5 is used. The study suggests a high potential for CNN-based methods to significantly improve the efficiency 
of measuring SWS parameters.



Geophysical Research Letters

ZHANG AND GAO

10.1029/2021GL097101

9 of 10

Data Availability Statement
The Python codes to train and test the CNN have been uploaded to GitHub under the address https://github.com/
YW-Zhang94/CNN-SWS.git, and the seismic data used in the seismic data used in the study (in SAC-Seismic 
Analysis Codes format with a total size of about 2.1 GB) can be found under https://figshare.com/articles/dataset/
CNN_SWS_data/19904833. All the waveform data used in the study are openly accessible from the IRIS Data 
Management Center (https://ds.iris.edu/ds/nodes/dmc/, last accessed March 2019), under the main network codes 
of AK (https://doi.org/10.7914/SN/AK), AT (https://doi.org/10.7914/SN/AT), DW (https://doi.org/10.7914/
SN/DW), IM (International Miscellaneous Stations), IU (https://doi.org/10.7914/SN/IU), TA (https://doi.
org/10.7914/SN/TA), XE (https://doi.org/10.7914/SN/XE_1999), XR (https://doi.org/10.7914/SN/XR_2004), 
XV (https://doi.org/10.7914/SN/XV_2014), YE (https://doi.org/10.7914/SN/YE_2011), and YV (https://doi.
org/10.7914/SN/YV_2006).
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