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6.1 GENERAL OBJECTIVES  
 
1) To gain insight into the causes of undesirable vibration of rotors and to understand static 

and dynamic unbalance conditions of rotors. 
 
2) To learn a simple, practical method of dynamic balancing that can be used in the field and 

appreciate its advantages and limitations. 
 
6.2 INTRODUCTION 
 
 Production tolerances used in the manufacture of rotors are adjusted as closely as possible 
without running up the cost of manufacturing prohibitively.  In general, it is more economical to 
produce parts, which are not quite true, and then to subject them to a balancing procedure than to 
produce such perfect parts that no correction is needed.  Typical examples of such machinery are 
crankshafts, electric armatures, turbo-machinery, printing rollers, centrifuges, flywheels, and gear 
wheels.  Some common causes of irregularity during production are machining error, cumulative 
assembly tolerances, distortions due to heat treatment, blow holes or inclusions in castings, and 
material non-homogeneity.  Because of these irregularities the actual axis of rotation does not 
coincide with one of the principal axes of inertia of the body, and variable disturbing forces are 
produced which result in vibrations.  In order to remove these vibrations and establish proper 
operation, balancing becomes necessary.  The forces generated due to an unbalance are proportional 
to the rotating speed of the rotor squared.  Therefore, the balancing of high-speed equipment is 
especially important. 
 
    Frequently, a machine already in operation will need re-balancing or a new machine when 
assembled at its permanent location will need balancing.  In some cases, the cost of disassembly, 
shipping to a balancing machine, and delay, are prohibitive and the machine must be rebalanced in 
the field in its bearings.  The system of balancing discussed in this experiment was developed to 
satisfy the need to perform field balancing of equipment easily and accurately. 
 
 Although there are many possible causes of vibration in rotating equipment, this technique 
will deal only with that component of vibration, which occurs at running speed (frequency), and is 
caused by a mass unbalance in the rotor.  Note:  This component is the only component of 
vibration, which can be eliminated by the addition or removal of weight from the rotor. 
 
 The condition of unbalance of a rotating body may be classified as static or dynamic 
unbalance.  In the case of static unbalance, the unbalance appears in a single axial plane.  In the case 
of dynamic unbalance, the unbalance can be in different axial planes.  As a result, while in rotation, 
the two unbalanced forces form a couple, which rocks the axis of rotation and causes undesirable 
vibration of the rotor, mounted in its bearings. 
 
 Let us now consider a single rigid rotating mass mounted in two supporting bearings and 
assume that the axis of rotation is horizontal.  It can be shown that for the correct balance of such a 
rotor, two weights placed in different radial planes of the rotor are necessary and sufficient to 
balance the rotor.  The vibratory motion of either bearing may be represented by three components, 
the horizontal and vertical radial components and the axial component.  The purpose of balancing at 
running speed of the rotor is to reduce the greatest of these three components to a practical 
minimum.  The other two components will be reduced to negligible amounts from their original 
magnitudes by this technique.  Assume in this example that the radial component is the greatest.  
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 Therefore, only this component will be measured and analyzed in this technique.  It follows that if 
the vertical components of vibration of two points, one chosen on each bearing, are reduced to zero 
(or near zero) the purpose of balancing has been accomplished and no vibration will be transmitted 
to the support structure. 
 
 There are four variables to be dealt with when balancing any rigid rotor.  They are the 
amount and position of the two correction weights required to balance the rotor.  Each correction 
weight is located in one of the arbitrary chosen radial reference planes on the rotor.  These reference 
planes are usually placed near the support bearings.  In general, the farther apart the radial reference 
planes are located, the smaller the required correction weight.  This technique deals with these four 
variables simultaneously as the amount and position of the correction weight in the other reference 
plane. 
 
 The data necessary to determine the magnitudes and position (angle) of the two correction 
weights are obtained by test runs, all at the same speed by measuring the vibration amplitude and 
phase angle at each bearing.  Some commercial equipment allows measurement of the vibration 
amplitude and phase relative to a geometric trigger reference point on the rotor.  Lacking the 
instrumentation to measure the phase angle, this technique will obtain data to allow calculation of 
the phase angle. 
 
 An important assumption made by this technique is that the system follows linear 
relationships i.e., the vibration amplitude is proportional to the force producing the vibration.  This 
assumption is reasonably valid.  Most simple rotors/systems can be balanced by applying this 
technique iteratively. 
 
6.3 EXPERIMENTAL SETUP 
 
 The apparatus provided to you is shown in figure 6.1.  The long, rigid rotor is supported in 
its bearings and is driven by a DC motor whose speed can be controlled.   Note that the cradle on 
which these are mounted has been isolated from the supporting structure.  Vibration amplitudes 
(not the phase angles) at bearings A and B are measured by accelerometers attached to them.  The 
signal from the accelerometers is integrated and converted to an electrical signal, which is then 
displayed on the spectrum analyzer.  Motor speed is also measured using the spectrum analyzer. 
 
6.4 PROCEDURE 
 
 Bearing in mind that our experimental apparatus measures only vibration amplitudes, we 
will measure values at both bearings with the trial mass at 0°, 90°, 180° and 270°, to determine the 
phase angle of vibration at both bearings. 
 
 The procedure to acquire the required data and balance the rotor is as follows:  
 
1) Vary the motor speed, recording the unbalance at each speed. 
 
2) Select and record a motor speed, which will be held constant throughout the experiment.  

Make a note of the fact that this is the speed to which our final results (correct balancing 
weights) will apply.  Results that you get using a lower speed can be later verified using 
higher speeds. 
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3) With only the original mass unbalances of the rotor, record vibration amplitudes at both 

bearings.  Sketch the spectrum analyzer screen showing the original unbalance. 
 
4) Arbitrarily choose a trial mass, mtrial and mount it on plane A of the rotor at an angle of 0°.  

Record readings at both bearings.  Repeat this step with the trial mass at 90°, 180°, and 
270°. 

 
5) Repeat step 3 with the difference that the trial mass is now mounted on plane B of the rotor. 
 
6) Mount the trial mass at 45° on plane A of the rotor and record reading at both bearings.  

This measurement is not needed for balancing the rotor, but will be used later as a check on 
calculations. 

 
7) Using the equations described in section 6.5 (calculations) determine the 2 masses required 

at both planes A&B of the rotor to dynamically balance the rotor.  These calculations will 
be performed manually, by you first, then check by running the computer code DYBAL. 

 
8) Run the rotor with the correction masses added.  Record the vibration amplitudes at both 

bearings.  Sketch the spectrum analyzer screen. 
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Figure 6.1   Schematic of Dynamic Balancing Experimental Setup. 
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DATA SHEET 
 
Motor speed = _____________ RPM (= _______________Hz) 
 
Vibration Amplitudes due to original unbalance: 
 
  Plane A: A = __________ 
 
  Plane B: B = __________ 
 
Trial mass  mtrial = __________ grams. 
 
Vibration Amplitudes with trial mass on Plane A. 
 
 Trial Mass Bearing A  Bearing B 
 Position 
 0°  A1

0 =  ________ B1
0 = _________ 

 
 90°  A1

90 = ________ B1
90 = ________ 

 
 180°  A1

180 = _______ B1
180 = _______ 

 
 270°  A1

270 = _______ B1
270 = _______ 

 
Vibration Amplitudes with trial mass on Plane B. 
 
 Trial Mass  Bearing A  Bearing B 
 Position 
 0°  A2

0 =  ________ B2
0 = _________ 

 
 90°  A2

90 = ________ B2
90 = ________ 

 
 180°  A2

180 = _______ B2
180 = _______ 

 
 270°  A2

270 = _______ B2
270 = _______ 

 
Vibration Amplitudes with trial mass on Plane A 
 
 Trial Mass   
 Position 
 45°  A1

45 = _______ B1
45 = _______ 

 
Vibration Amplitudes with corrected masses added 
 
  Plane A: A = __________ 
 
  Plane B: B = __________ 
 
 
 
 



6.5 CALCULATIONS 
 
Let, 
 
A   = vibration amplitude at Bearing A due to original unbalance of rotor. 
 

AΨ   = vibration phase angle at Bearing A due to original unbalance of rotor. 
 

1A∆  = additional vibration amplitude at Bearing A due to the trial mass mounted at any angle on 
plane A. (see figure below) 
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Figure 6.2 

 
From these quantities we can derive. 
 
NOTE: You should prove this to yourself before you run the experiment. 
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Let, 
 

1A∆  = additional vibration amplitude at Bearing A due to trial mass mounted at any angle on 
plane B. 
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DefiningB , Bψ , 1B∆ , and 2B∆ similar to the quantities above (except that they are measured at 
Bearing B), we can show that,  
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The purpose of calculating these A∆ and B∆ values is ultimately to determine the masses and their 
locations on planes A and B that will eliminate the vibration at both bearings.  Let these correction 
masses be identified as AM and BM for planes A and B respectively.  In this experiment there are 
only a limited number of locations where AM and BM  can be attached.  This problem is easily 
solved by calculating an x and y component of both AM and BM .  Define vectors AR  and BR  

as correction factors to be applied to the trial masses on planes A and B.  The following equations 
express the relationships between the trial masses and the final correction masses. 
 
 trialAA MRM =  (7) 
 
 trialBB MRM =  (8) 
 
or in component form 
  
 trialAxAx MRM =  (9) 
 
 trialAyAy MRM =  (10) 
 
 trialBxBx MRM =  (11) 
 
 trialByBy MRM =  (12) 
 
Recall that the vibration at bearing A was affected by the trial mass attached to plane A , 1A∆ , as 
well as by the trial mass attached to plane B, 2A∆ .  It is desired to determine correction factors 

AR and BR  which, when applied to the trial masses on planes A and B respectively, will cause the 
total change in vibration at bearing A to offset the original unbalance at bearing A.  This can be 
expressed as: 
 
 AARAR BA −=∆+∆ 21  (13) 
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It is also necessary for the same correction factors to simultaneously balance bearing B.   
Thus, 
 

 BBRBR BA −=∆+∆ 21  (14) 
 
Equations (13) and (14) state mathematically that the proper location of AM and BM on planes A 
and B will produce vectors equal to, but opposite in direction to the existing vibration ( )BandA  
thus eliminating the vibration.  Resolving equations (13) and (14) into their x component equations 
gives: 
 
 ABxAx AARAR ψcos21 −=∆+∆  (15) 
 
and  BBxAx BBRBR ψcos21 −=∆+∆  (16) 
 
Equations (15) and (16) can be readily solved for AxR  and BxR since all of the other quantities are 
known: 
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Similarly, Eqns. (13) and (14) can be resolved into their corresponding y  component equations: 
 
 AByAy AARAR ψsin21 −=∆+∆  (19) 
 
and  BByAy BBRBR ψsin21 −=∆+∆  (20) 
 
Again, equations (19) and (20) can be solved for since all other quantities are known: 
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The 4 individual required masses can now be determined from Eqns. (9), (10), (11) and (12).  To 
place these masses at the correct locations, keep the following in mind: 
 
 x component placed at 0° position if positive, placed at 180° position if negative 
 y component placed at 90° position if positive, placed at 270° position if negative. 
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6.6 RESULTS OF INTEREST 
 
(1) Determine the percent reduction at each bearing.  How can these results be improved 

further? 
 
(2) Using your calculated values, verify Equations (13) and (14) graphically. 
 
(3) Neatly sketch the original spectrum analyzer screen showing the original unbalance and the 

screen after the correction mass has been added.  Explain all important features. 
 
(4) Plot vibration amplitudes of the unbalance rotor versus the motor speed.  Explain this 

behavior. 
 
(5) Construct a scaled figure similar to Fig. 6.2 using the following procedure: 
 
 (a) Draw vector  using your measured magnitude and calculated direction. 
 
 (b) From the tip of A, draw vertical and horizontal construction lines. 
 
 (c) Draw vectors 

0
1A , 

90
1A , 

180
1A , and 

270
1A , using your measured magnitudes.  The 

directions should be determined by placing the tips of the vectors on the horizontal 
or vertical construction lanes. 

 
 (d) Measure from your figure the four distances corresponding to 1A∆  in Figure to your 

calculated 1A∆ . 
 
 (e) Using the calculated values of 1A∆  and 1B∆ , draw vector diagrams to predict the 

vibration at bearings A and B due to the trial mass mounted at 45° on plane A. (You 
may use the above vector diagram for bearing A).  Compare these values to the 
vibration amplitudes actually obtained when this trial mass is mounted. 
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