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Al~tract--The governing equations for geometrically nonlinear, arbitrarily laminated rectangular 
plates reinforced by stiffeners which include piezoelectric and composite layers are presented. 
General equations obtained in the paper are reduced to a single equation of motion for piezo- 
electrically reinforced, geometrically linear, specially orthotropic plates. A criterion for an effective 
control of forced vibrations of such plates using piezoelectric stiffeners and a static electric field is 
illustrated. Active control of dynamic stability using a dynamic electric field with a frequency equal 
to that of the in-plane load is also considered. 

In addition, an approach to the analysis of piezoelectrically stiffened nonlinear plates whose 
motion is represented by single-term functions of the coordinates is discussed. 

Numerous active control problems can be addressed using the theory outlined in the paper. 
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cross-sectional areas of the stiffeners oriented in the y- and x-directions, respectively 
extensional stiffnesses of the plate 
cross-sectional areas of composite layers in the stiffeners 
cross-sectional areas of piezoelectric layers in the stiffeners 
coupling stiffnesses of the plate 
bending stiffnesses of the plate 
piezoelectric constant 
moduli of elasticity of composite layers in the axial directions of the stiffeners oriented in the y- and 
x-directions, respectively 
modulus of elasticity of piezoelectric layers 
first moments of cross-sectional areas of composite layers in the stiffeners about the plate middle 
plane 
first moments of cross-sectional areas of piezoelectric layers in the stiffeners about the plate middle 
plane 
plate thickness 
second moments of cross-sectional areas of composite layers in the stiffeners about the plate middle 
plane 
second moments of cross-sectional areas of piezoelectric layers in the stiffeners about the plate 
middle plane 
in-plane stress resultants (i = 1, 2, 6) 
stress couples (i = 1, 2, 6) 
thicknesses of piezoelectric layers in the stiffeners oriented in the x- and y-directions, respectively 
in-plane and transverse displacements 
voltage 
static voltage 
coordinates of the stiffeners oriented in the y-direction 
coordinates of the stiffeners oriented in the x-direction 
distances from the cross-section centroids of piezoelectric layers to the plate middle plane 
frequency of the driving force 

I N T R O D U C T I O N  

Development of smart composite structures represents one of the most significant recent 
trends in the mechanics of structures. These structures can provide significant advantages as 
compared with traditional "passive" structures. Possible active components which can be 
used as a part of an overall composite material can include magnetostrictive and 
electrostrictive materials, shape memory alloys, etc. Another promising opportunity is 
presented by piezoelectric materials. 
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The first investigations of piezoelectric structures were published by Haskins and Walsh 
[1] and Toupin [2] who considered cylindrical and spherical shells, respectively. Linear 
vibrations of piezoelectric plates were analyzed in a monograph by Tiersten [3]. Adelman 
and Stavsky [4] published a pioneering paper where they investigated vibrations of 
composite cylinders and disks formed by piezoceramic and metallic layers. Developments in 
the area of application of piezoelectric materials in smart structures were outlined by 
Rogers et al. [5, 6] and Hanagud et al. [7]. 

Recent studies dealing with identification and control of anisotropic plates and shells 
using piezoelectric sensors and actuators have been published by Hagood et al. [8], 
Crawley and Lazarus [9], Tzou and Garde [10], Tzou and Zhong [11] and Sung et al. [12]. 

The references listed above considered distributed sensors and actuators which can be 
either embedded in the structure or bonded to its surface. It may be beneficial to arrange the 
actuators (and, possibly, the sensors) in the traditional pattern of stiffeners. In the present 
paper, governing equations are developed for a geometrically nonlinear, generally 
laminated rectangular plate reinforced by two mutually perpendicular systems of stiffeners, 
each system being parallel to the plate edges (Fig. 1). The stiffeners can include 
a piezoelectric layer and composite material layers as shown in Fig. 1. 

Analysis: 9overnino equations 
Governing equations for geometrically nonlinear, generally laminated composite plates 

reinforced by the stiffeners composed of the layers of composite and piezoelectric materials 
are formulated in this section. The stiffeners are assumed to be perfectly bonded to the plate. 
This means that deformations of the plate and the stiffeners are continuous. 

Consider a rectangular plate reinforced by stiffeners oriented in the x- and y-directions 
(Fig. 1). Equations of motion obtained by the assumption that in-plane inertial terms are 
negligible read: 

N1, x + N6, r = 0, 

N6, x + N2,y = O, 

M l , x x  + 2M6,xr + M2,r r  + (N1w, x + N6w.r) ,x  + (N6w, x + N2w, y),r = pw, t,, (1) 

where: {s,,}-- 

M6 

ax dz + ~ 6(y - y~) ¢r~ dA~, 
J -  h i  2 s s 

I:t fA {:1 o~ dz + ~ b(x x,) dA.  
J - h / 2  r - -  ~ O ' y  , 

axr d2. 
j -  hi 2 

(2) 
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FIG. 1. Geometry of the plate; 1 = piezoelectric layer. 
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In Eqns (1) and (2) a~, ay and a~ are in-plane stresses and the coordinate z is measured from 
the middle surface of the plate. The effect of the stiffeners is accounted for via Dirac's delta 
function 6(...). In a particular case of a large number of closely spaced identical stiffeners in 
one or both directions, the so-called smeared stiffeners technique can be used. According to 
this technique: 1 

a(x - ~ , )  = ~, 

1 
fi(y - y,) = ~, (3) 

l, and I, being the spacings of the corresponding stiffeners. 
The mass of the plate per unit area is: 

p = ph + ~. ,5(x - x , ) p , A ,  + ~.,cS(y - y . )psA, ,  (4) 
• $ 

where/5, p, and p, are the average mass densities of the materials of the plate and the 
stiffeners. 

Constitutive relationships given by Eqn (2) can be subdivided into the contributions of 
the plate and those of the stiffeners. The plate relationships for a generally laminated plate 
with geometrically nonlinear deformations are described by yon Karman type plate theory: 

.N t ill A12  11B12  16- 
N~ A22 A26 B12 B22 B26 

N~ = A66 B16 B26 B66 

M'I Dll O12 D16 

M~ D22 D26 

. M 6 [sym D66 

u~+ ½w\ 
v y + ½w,Zy 

U.y + V.x + W.xW.y 
(5) 

- -  W xx 

- -  W, y y  

- 2W, xy 

where a prime denotes the plate contributions. 
The contribution of the stiffeners is obtained using physically linear electromechanical 

constitutive equations [3]. In the present problem, the plate is subject to a voltage V in the 
z-direction resulting in axial strains in the piezoelectric layers of the stiffeners. Accordingly, 
the axial stresses in these layers in the stiffeners oriented along the x- and y-axes are [13]: 

1 2 d31 V~ 
a ~ = E p  u . , , + ~ w . , , - z w , x ~  tx / (6) 

( 1 z d~V'~ 
ay = Ep v y + ~ w . y - z w y y  . (7) 

ty / 

Obviously, the stresses in the layers of composite materials that form the stiffeners can be 
obtained from Eqns (6) and (7) by deleting the voltage-dependent terms and using the 
appropriate modulus of elasticity. 

Now the stress resultants and couples contributed by the stiffeners can be obtained: 

[ ( , 2 )  N l = ~ ,  a ( y  - y , )  (F.~A,~ + E,A,o) u ,x  + -~ W x 
$ 

-(EpFsp+EsFsc)w, x x - E p A s p ~ V ] ,  

M1 = E 6(y - y,) (EpFsp + E, esc ) U x + i w'x 
$ 

+ c,w.. v I 
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[ ( ' , )  N 2 = E 6 ( x - x , )  (E,A,p+E,A,¢) v r + ~ w r  
r 

-- (E,F~p + E,F~c)w r r - EpA~p d31tr VI  ' 

M2 = F~ ~(x - x,) (E~f~p + E,Fro) v ,  + 5 w 
r 

- (EpI~p + E,I~)wyr - EpF~p d3--Ltr V 1 " (8) 

Total stress resultants and-stress couples are obtained by superposition of the 
contributions of the plate and those of the stiffeners: 

Ni = N; + N;', 

Mi = M; + M;', (9) 
where i = 1, 2, 6. 

The substitution of Eqns (9), (5) and (8) into Eqn (1) yields a system of nonlinear 
differential equations which can be presented in the operational-functional form as: 

o +  o oO f o IL2, L22 L23 r=3(w) / + 
LLsx L32 L33 3,(u,w) K32(v,w) K33(w) A N33(w) 

f:l f 1t t ° t = + P2 V + 0 . 

pw,. P3 PW(w, V) 
(1o) 

In Eqns (10), [Lo] is a matrix of linear differential operators; the terms representing 
quadratic and cubic nonlinearities are assembled in the matrix [Ko] and the function 
N33(w), respectively, {Pi} is a vector of linear differential operators, and PW(w, V) is 
a linear function of w with the coefficients depending on the voltage V. 

The linear operators in Eqns (10) are: 

6~2 ~2 ~2 
L t t =  Axt ~x2 + 2A16 ~-~y + A66 ~y2, 

~2 ~2 ~2 
Lt2 -- L21 = A16 ~ x  2 + (A12 + A66) ~ + A26 6~y2, 

[ c ~3 c ~3 c~3 6~3 1 
Lt3 -- - L31 = -- BII  ~ x  3 Jr (BI2 + 2B66) ~ -~y2  + 3Bt6 a x - ~ y  + B26 ~y3 , 

~2 6~2 ?2 

L22 = A66 ~ x  2 + 2A26 ~ + ,,z122 c3y2 , 

i 6~3 ~2 c~3 c~3 1 L23 -- -- L32 = -- B t 6 ~ x  3 + (Bt2 + 2B66) ~x-~y + 3B26 ~-'~y2 +/]22 ~y3 , 

L33 -- - /)tt ~x4 + 4D16 ~ + 2(D12 + 2D66) ~x 2 0y---'--'~ + 4D26 ~ +/)22 ~ , 

(11) 
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63 
PI = ~, 6(y -- y~)Rx ~x' 

5 

63 

632 632 
P3 = Zs 6(y -- ys)R1 Zsp ~ x  2 + ~• ~(X -- Xr) R 2 Zrp 63y2, (12) 

PW(w, V)= ~ f ( y -  y~)Rt(Vw, x),x + ~ , f ( x -  x,)R2(Vw.y).,, (13) 
$ • 

where the terms with an overbar indicate extensional, coupling and bending stiffnesses 
affected by the presence of stiffeners: 

A l l  = All + Z ~(Y -- Ys)(Ep Asp + E s Aso ), 
$ 

~Z122 = A22 "1- Z 6 ( x  - Xr) (Ep arp "}- E r Arc), 

/~11 = Bll  + ~ 6(y - Ys)(Ev Fsv + Es F,c), 
$ 

/~22 : B22 -I- Z 6(x  -- Xr) (Ep Frp "4- E,  Frc), 
r 

/)11 ---- D l l  + ~ 6(y - Ys) (Ep Isp -]- Es Iso), 
$ 

/)22 = D22 q- Z ¢~(x - Xr) (Ep lrp -t- E r lrc)" (14) 
r 

Constants introduced in Eqns (12) and (13) are: 

RI = Ep A dat 
sp tx ' 

R2 = E ,4 (15) rp ty " 

Nonlinear functions in Eqns (10) are given in the Appendix. 
Applications of the developed theory to various active control problems are illustrated in 

the following examples. 

Example 1. free and forced vibrations of specially orthotropic stiffened plates 
If linear vibrations of specially orthotropic stiffened plates are analyzed, governing Eqns 

(10)-(14) are simplified, i.e.: 

(a) nonlinear terms in Eqns (10) are omitted; and 
(b) stiffnesses At6 --- A26 = D16 - D26 -- B~j = 0 in Eqns (11) and (14). 

Note that the stiffnesses /~11 and/~22 are equal to zero only if the first moments of the 
piezoelectric and composite layers of the stiffeners are equal to zero. This is possible, if 
identical stiffeners are attached to opposite surfaces of the plate. An example of a similar 
arrangement can be found in Refs [9] and 1-13], where piezoelectric elements are bonded to 
opposite surfaces of an elastic substrate. If this is the case, and the stiffeners on the opposite 
surfaces of the plate are subjected to in-phase voltages, then Eqns (10) yield a single 
equation for transverse vibrations: 

632w _ 634w 634w _ 634w 
- - +  P3V+ PW(w,V)=O. (16) + D~ ~ x  4 + 2(D,2 + 2D66) dx---~dy 2 + D22 63y4 

1,5 35:5-D 
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Obviously, if the voltage is uniform, the term P3 V does not affect the natural frequencies 
and can be omitted. Even in the case of a nonuniform voltage and identical stiffeners 
attached to the opposite surfaces of the plate, P3 V = 0, since Zsp = Zfp = 0 in Eqns (12). In 
the absence of the stiffeners and the electric field, Eqn (16) is reduced to the well-known 
equation for free vibrations of specially orthotropic plates. 

If all edges of the plate are clamped, the solution can be obtained in the form: 

( 2m xt( 7') w= W",(t) 1 - c o s  1 - c o s - -  , (17) 

where a and b are the lengths of the plate in the x- and y-directions, respectively, and m and 
n are integers. 

Two electric fields are considered here: 

(a) uniform voltage: 

V = V(t); and (18) 

(b) electric field corresponding to the mode shape of motion: 

V= Vm,( t ) (1-  cos 2 m a r t / ) ( 1 -  cos ~ - - ~ ) .  (19) 

The substitution of Eqns (17)-(19) into Eqn (16) and the Galerkin procedure yield the 
following equation of motion for a plate with closely spaced identical stiffeners in both 
directions (smeared stiffeners technique): 

9 dZ W~" + 16 [3/)11 ( 7 ) ' +  + 2 D 6 6 ) ( ~ )  2 ( 7 ) 2 +  

FA.p(rn~]2 Arp {n~h2 ] 
-kEpd31Lt~ls \  a / +~ f l , \ b - J  j w " . v ( t ) = o ,  (20) 

where k = 12 for a uniform electric field and k = 20 for an electric field given by Eqn (19). 
Equation (20) can be used for various control problems. Obviously, in the case of a forced 
motion it must be complemented by terms corresponding to the driving forces. 

We denote the natural frequency of a stiffened plate without piezoelectric materials by 
a~", and the frequency of the same plate with piezoelectric layers added to the stiffeners and 
subjected to a static voltage V0 by 09",(/I0). As follows from Eqn (20), if Vo > 0: 

~", > 09"n(Vo). (21) 

The reversal of the polarization yields the opposite result. 
Forced vibrations of a plate with arbitrary boundary conditions are described by the 

equation: 
d 2 W", 
dr---- T -  + o9~.( Vo) WI, = q". sine)t, (22) 

where q". is a function of the amplitude of the corresponding harmonic in the double 
Fourier series which represents the transverse load. 

To establish a criterion for an effective active control using a static voltage, compare 
Win. = W",(V0) to W". = W,,.( V = 0). 

Obviously, an effective control of vibrations can be achieved if the ratio: 

W".(Vo) 2 w2 (~0  " .  - -  (23) 
P - W m . (  V o  = O) ~ 0 ~ . . ( V O )  - -  O~ ~ '  

is less than unity. 
If inequality (21) is satisfied, the latter requirement means that: 

o9,..(Vo) < ~o. (24) 

Inequality (24) indicates the condition for an effective control of forced vibrations of 
specially orthotropic plates using piezoelectric stiffeners and a static electric field Vo > 0. 
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1.0 1.5 2. 0 ~2 

FIG. 2. Conditions for a prescribed level of reduction of the amplitude of forced vibrations. Cases 1, 
2 and 3 correspond to p = 0.50, 0.25 and 0.I0, respectively. 

Introducing nondimensional frequencies: 

03 = ~oI~.,. and fl = c0~( Vo)Ico=., (25) 

one can obtain the amplitude reduction factor in the form: 

1 - -  032 

P = •2  - -  032" (26) 

The squared ratios f~ necessary to achieve prescribed amplitude reductions are shown in 
Fig. 2 as functions of squared nondimensional excitation frequencies ~. Note that out- 
of-phase voltages applied to the stiffeners on the opposite surfaces of the plate result in 
bending moments. Therefore, they can be even more effective for the reduction of forced 
vibrations. 

Example 2. Active control of dynamic instability 
Dynamic instability of composite plates was considered by Birman [14], Srinivasan and 

Chellapandi [151 Bert and Birman [16], Chandiramani and Librescu [17], Tylikowski 
[18], Moorthy et al. [19], Librescu and Thangjitham [20] and Cederbaum [21]. In this 
example it is shown that in-plane dynamic forces generated by piezoelectric stiffeners can 
"shift" the regions of instability to "safe" excitation frequencies preventing parametric 
resonances. 

The linear equation of motion of a plate subjected to in-plane loads N O cos2o~t can be 
reduced to: 

d 2 Wren 
dz 2 (27) 

where 

1 
- -  + ~-~ [1 + ~7~ c o s 2 ~  + l?(r)] W ~  - 0, 

"~ = f~Ot, (28) 
is a nondimensional time. 

The expressions for dimensionless in-plane load amplitude,/~x, and voltage I?(T) which 
can be obtained for particular boundary conditions and mode shapes of motion are omitted 
for brevity. 

If the frequency of the dynamic voltage is equal to that of excitation, i.e.: 

I7(~) = /7cos2~, (29) 

Eqn (27) is a Mathieu equation. 
According to the theory of Mathieu equations [22], the boundaries of the principal 

region of dynamic instability can be approximated by the series: 

o3-- ~ = 1 T- (Nx + /7) - - ( N x  + 17")2 + ... (30) 

In particular, if the higher order terms in the right-hand side of Eqn (30) can be neglected: 

032 = 1 +_ ½ (~x + V). (31) 

The analysis of Eqns (30) and (31) illustrates that the parametric resonance (dynamic 
instability) can be avoided by using piezoelectric effects. This is shown in Fig. 3, which is 
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II~xl 
1.0 

" / 5 / 

1.0 2.0 3.0 ~2 4.0 

FIG. 3. Principal  regions of dy nam ic  instability. Case  1 :17 = 0 (no voltage); case 2 : 1  "7 = 2.5, 
~7~, 1,7 > 0; case 3:17 = 2.5, /qx I7 < 0; case 4 : / 7  = 5.0, ~Tx 17 > 0; and  case 5:17 = 5.0, N~ /7 < 0. 

obtained using Eqn (31). In this figure, the boundaries of the principal instability region are 
shown in the axes "squared nondimensional excitation/voltage frequency-nondimensional 
amplitude of in-plane load". 

As follows from Eqns (30) and (31) and Fig. 3, piezoelectric effects result in "shifting" the 
instability region along the axis of nondimensional excitation frequencies. At the same time, 
the width of the instability region increases, particularly if bTx and I7 have the same sign. It is 
interesting to note that for the values I7 < 2 (the case which is not shown in Fig. 3), there are 
two principal instability regions due to piezoelectric effects. The origin of one of them 
corresponds to 05 > 1 while the second originates at o3 < 1. This conclusion follows from 
Eqn (31) where ~Tx = 0. 

Example 3. Approach to the analysis of  active control of  nonlinear vibrations 
Consider nonlinear vibrations by the assumption that displacements are single-term 

functions of coordinates, i.e.: 
u = tY(t) f l (x ,  y), 

v = V(t) fz(x ,  y), 

w = ff '(t)fa(x, y), (32) 

where f~(x, y) satisfy the boundary conditions. 
An electric field is represented by: 

V = F( t ) f , ( x ,  y). (33) 

The substitution of Eqns (32) and (33) into the first two of Eqns (10), and the Galerkin 
procedure yield: 

U = al  W + a2 ~/.2 + dl F, 

! ? = a3 W + a4 I'V 2 + d2 F, (34) 

where a~(i = 1, 2, 3, 4) and dj ( j  = 1, 2) are coefficients. 
Upon the substitution of Eqns (32), (33) and (34) and the application of the Galerkin 

procedure, the last of Eqns (10) becomes: 

d 2 W 
dt-- 5- + (ca + c2 F) [,V + c3 if,,2 + c4 [,p3 + d3 F = 0, (35) 

where ci and d3 are coefficients. 
Equation (35) can be used for the active control analysis of free nonlinear vibrations. 

Driving forces can be incorporated into this equation. 
Notably, if the electric field is static, i.e. F = constant, Eqn (35) is similar to the equation of 
motion of reinforced composite cylindrical shells suddenly subjected to a thermal field [Eqn 
(12) in Ref. [23]]. Therefore, the discussion presented in the above paper can be extended to 
the present case. A periodic motion, which occurs if c1 + c2 F > 0, can be described by: 

f" t -- to - [(cl + c2 F) (1 -- W .2) + ] c3 I~"max(1 - -  W . 3 )  
0 

+ ] c4 Wmax ( 1 -  2 __ W .4) + 2(da/ f f 'm , )F(1  -- W*)] -~ dW*, (36) 
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where: 
W* = W/Wm,x, I4:0 = W*(to), (37) 

to being a reference time. 
The right-hand side of Eqn (36) can be represented as an elliptic integral, as shown in 

application to free vibrations of beams where c3 = 0 by Woinowsky-Krieger 124], Burgreen 
1,25] and others. However, the two-term Galerkin approximation can provide a simple yet 
accurate solution 1,26]. Details of such solutions for an equation similar to Eqn (28) can be 
found in Ref. 1,23]. 

C O N C L U S I O N S  

This paper presents a mather~atical formulation of the active control problem for 
arbitrarily laminated rectangular composite plates reinforced by stiffeners which include 
piezoelectric layers. Geometrically nonlinear equations of motion are presented. In the 
example considered in the paper, these equations are reduced to a single equation of motion 
for linear vibrations of specially orthotropic stiffened plates subjected either to a uniform 
electric field or to a field that reflects the mode shape of vibrations. A criterion for an active 
control of forced vibrations using piezoelectric stiffeners is illustrated. Control of dynamic 
instability using dynamic piezoelectric effects is also discussed. In the other example, 
a nonlinear resonse of a plate is discussed by the assumption that displacements can be 
represented by single-term functions of the in-plane coordinates. 
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A P P E N D I X  

Nonlinear functions in Eqns (10) 

(1) Quadratic nonlinearity. 
(a) Operators defined by: 

Ki3 (w) =/~/3 w (i = 1, 2), 

O 0 2 O d 2 O ~2 ~ O 2 a O ~ ~ ~2 
/(,3 = ~-11 ~x ~ x  i + 2AI e ~x ~ + (AI2 -t'- A66)~y ~ 4- A16 ~y ~ x  2 '-I- A66 ~ ay--- ~ + A26 ~y't~y 2 

d d 2 d d2 O O 2 O O 2 O O 2 ~ O 2 
/~23 = A16 ~x ~ x  2 + (A:2 +Aee) ~ ~ + 2A26 ~y ~ + A66 ~yy ~ x  2 + A26 0x Oy 2 + -422 ~y dy 2 • 

(b) Nonlinear functions: 

L~JFfO2W~2 ~OWO3WI__ L~2jrf°2w~2 -~OWO3W]~ ~X 303WOWOy K33 (W) = J~ll "1" ~X3/ "1" B22 "~ "+ BI6 

/ O~w V Ow a~w aw a ~  a~ a ~ w 
+ 2B12 Ii ~-~y I/ + B26 ~--~x ~ y  3 + 3B16 - - - -  + 3B26 - - - -  0x 0X 2 ¢~y 0y ~x 0y 2 

d2w 
~'x2 "~-y2 J + (B,2 \-5#xa;~2+~yOx2~y) 

O 2W O 2W O 2w a 2w f O r /_  02W 02W 02W ~OW 
"I'4B'6 0x2 0xOyIF4B26-~-x'~yOy2 %~Lt~,,~+.,.v+=.,~oxoy:o~.- 

o[ (  o. ou, ow ( o. o.,owl r,,(u,w):~ X,,~+A,,~)~+ A,o~+A~)~J 
O F/ Ou OukO~ / Ou aukowq 

D[( oo ooXow ( o~ _ o , \ o w ~  
+ 

(2) Cubic nonlinearity. 

( e l ' +  2A °w°wl fowl= + iowv 

O w ~ w ~ .  r iowV _ IowV ow~w~Ow~._,_> 


