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A~tmet--A theory of sandwich plates with composite-material facings and piezoelectric 
strip-stiffeners bonded to the surface or embedded in the facings is developed. The stiffeners bonded 
to the surfaces are modeled using either the plane stress assumption or a first-order shear deformable 
theory. The former approach is appropriate if the stiffeners represent thin strips, while the latter 
method can be used in the case where the stiffeners are relatively deep. The stiffeners embedded in 
the facings in the form of piezoelectric strips are considered using the plane stress assumption. 
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N O T A T I O N  

cross-sectional area of a stiffener (i = r, s) 
extensional stiffnesses (i , j  = 1, 2, 6) 
electric displacements (i = x, y, z) 
bending stiffnesses (i , j  = 1, 2, 6) 
piezoelectric coefficients (ij = 31, 33, 15) 
modulus of elasticity 
electric field components (i = x, y, z) 
first moment of a stiffener with respect to the sandwich middle plane (i = r, s) 
shear modulus of piezoelectric material in the plane xy 
shear modulus of piezoelectric material in the planes xz and yz 
shear modulus of a transversely isotropic core material in the planes xz and yz 
effective shear moduli of a honeycomb core in the planes xz and yz, respectively 
thickness of the core 
thickness of a facing 
thickness of a piezoelectric strip 
moment of inertia of a stiffener with respect to the sandwich middle plane (i = r, s) 
stress couples ( i = x, y, xy) 
in-plane stress resultants (i = x, y, xy) 
transverse shear stress resultants (i = x, y) 
transformed reduced stiffnesses (i , j  = 1, 2, 6) 
elastic compliances (ij = 11, 12, 13, 33, 44, 66) 
in-plane displacements of the sandwich middle plane 
transverse deflections of the sandwich middle plane 
cartesian coordinates 

strains 
dielectric permittivities (ii = 11, 33) 
Poisson's ratio 
mass density 
stresses 
voltage in piezoelectric sensors 
bending slopes in the planes xz and yz, respectively 

I N T R O D U C T I O N  

Ac t ive  c o n t r o l  o f  t h in -wa l l ed  s t ruc tu res  us ing  p iezoe lec t r i c  sensors  a n d  a c t u a t o r s  has  been 

c o n s i d e r e d  by a n u m b e r  o f  inves t iga tors .  In  pa r t i cu la r ,  c o n t r o l  o f  c o m p o s i t e  p la tes  and  

shells us ing  d i s t r i bu t ed  p iezoe lec t r i c  a c t u a t o r s  was  a subjec t  o f  r e sea rch  by  H a g o o d  et  al. 

[1],  C r a w l e y  a n d  L a z a r u s  [ 2 1  T z o u  a n d  G a d r e  [3].  T z o u  a n d  Z h o n g  [4] ,  S u n g  et  al. [5],  

a n d  W a n g  a n d  R o g e r s  [6].  A c t u a t o r s  c o n s i d e r e d  in these  pape r s  were  e i the r  i nc luded  in the  
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568 v. B1RMAN 

laminate as additional layers, or arranged in the form of patches bonded to the surface or 
embedded within the structure. A different approach to piezoelectric actuators was used by 
Birman [7, 8] who considered laminated plates reinforced by ribs that include piezoelectric 
strips. This approach can promise advantages similar to those enjoyed by reinforced 
structures as compared to unstiffened ones. 

In the present paper, the theory of sandwich plates with piezoelectric strip-stiffeners is 
developed. The stiffeners can be either bonded to the surface of the sandwich or embedded 
within the facings. Sandwich plates considered in the paper have composite, generally 
laminated facings and a core with different transverse shear stiffnesses in the directions of 
the plate axes. This is a rather general model of sandwich plates that can be used to 
represent numerous applications. Mentioned here is a comprehensive review of Bert [9] 
that contains a discussion of existing research in sandwich plates with composite facings. 
The theory presented in the paper can be applied to the case of discrete as well as smeared 
stiffeners. The latter approach is feasible, if the stiffeners are identical and closely spaced. 

FORMULATION OF THE PROBLEM AND BACKGROUND 

Consider a sandwich panel with multilayered composite facings (Fig. 1). Piezoelectric 
stiffeners can be either bonded to the surface of the sandwich or embedded within the 
facings. The scheme with the stiffeners embedded in the core is not considered, since 
desirable effects can be achieved if the stiffeners are located as far from the middle surface as 
possible. 
The analysis is based on the following sets of assumptions: 

1. Facings 
(i) Facings are identical and symmetric with respect to the middle surface; 

(ii) plane stress state is dominant, i.e. transverse shearing and transverse normal stresses 
are negligible; 

(iii) the behavior of the facing material is linear and elastic; 
(iv) the thickness of the facings is constant throughout the sandwich. 
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FIG. 1. Sandwich plate with piezoelectric stiffeners; 1 = composite facings, 2 = core, 3 = piezoelec- 
tric stiffeners. 
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2. Core 
(i) In-plane stresses are negligible; 

(ii) transverse normal stresses can be neglected; 
(iii) the behavior of the core material is linear and elastic; 
(iv) the thickness of the core is constant. 

3. Piezoelectric stiffeners 
(i) The stiffeners are arranged in couples that include identical strips of a piezoelectric 

material, symmetric with respect to the middle surface; 
(ii) the material is macroscopically polarized by the poling process, so that the z-axis is 

the polar axis; 
(iii) the behavior of the material is linear and elastic; 
(iv) the thickness of each stiffener does not vary along its axis. 

4. General assumptions 
(i) The theory developed in the paper is limited to geometrically linear deformations; 

(ii) perfect bonding is assumed between the core and the facings, and between the 
facings and the stiffeners; 

(iii) in-plane deformations are continuous throughout the core, facings and stiffeners. 

Note that the core material is often assumed to be transversely isotropic. However, this 
assumption is wrong for a honeycomb core where the effective transverse shear stiffnesses in 
the planes xz and yz are different. An example of stiffnesses for a honeycomb core can be 
found in the book of Vinson and Sierakowski [10]. 

The assumptions for piezoelectric stiffeners do not specify the state of the stresses. Two 
cases considered here include the stiffeners in the state of plane stress and transversely shear 
deformable stiffeners with negligible transverse normal stresses. 

A piezoelectric material polarized along the z-axis remains macroscopically isotropic 
in the x-y plane. Accordingly, the piezoelectric constitutive relations for such a material 
are [11]: 

- 

gx Sll S12 S13 d31 trx 

Ey S12 Sll S13 d31 o'y 

F,z S13 S13 S33 d33 trz 

Dz d31 d31 d33 /;3T3 Ez 

ey~ = s44 d15 ayz (1) 

Dr d15 gT 1 Er I 

exz S44 dl 5 trxz 

D~ d15 e~l [ Ex 

gx~ S66 ~ 0"xy 

where al, ai~, el and eij denote axial and shearing stresses and strains, respectively. 
Unoccupied positions in the matrix in the right side of Eqns (1) correspond to zeros. 
Numerous piezoelectric ceramics, e.g. barium titanate, lead zirconate titanate, lead 
metaniobate, and others are characterized by the constitutive Eqns (1). 

In the state of plane stress, the strain-stress equations obtained from relations (1) are: 

/~xy ~ S66 0"xy 

~x = SII O'x "q" S12 O'v "~ d31Ez 

I~y = S l20"x  d,- Sl 10"y "J~ d31E,,  (2) 
where: 

sll = E -1 s12 = - #E -1 S66 = G -1, (3) 

E, G and/~ are the elasticity and shear moduli, and the Poisson's ratio of the material in the 
plane of transverse isotropy (xy plane). 
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If transverse shear deformability is included in the analysis, Eqns (2) must be 
complemented by the expressions for ~yz and ex~-. Limiting the analysis to the case where the 
only nonzero electric field component is acting in the thickness direction, one obtains: 

~:;,. = G' 1 o-~ c.x.. = G' ~ o-x~, (4) 

where G' is the shear modulus in the planes x z  and yz.  
Two approaches to piezoelectric stiffeners are considered, i.e. discrete stiffeners and 

smeared stiffeners. The latter approach, i.e. smeared stiffeners technique, is justified in the 
case of identical closely spaced stiffeners. To illustrate the difference between discrete and 
smeared stiffeners, consider a system of stiffeners oriented in the y-direction. If the 
coordinates of the centroids of the stiffeners are denoted by x, and f ( x )  is a contribution of 
the stiffeners to the stress resultant or to the stress couple, the discrete stiffeners approach in 
conjunction with Galerkin's procedure yields: 

f l = 6 ( x  - x , ) f ( x ) d x  = ~ J ' ( x , ) ,  (5) 
) r 

where 6 ( x  - x , )  is Dirac's delta function. 
According to the smeared stiffeners technique, 

c~(x - x~) = I~ 1 (61 

where l~ is the spacing of the stiffeners, i.e. the contribution is given by: 

F 2 = f ( x ) d x .  (7) 

Obviously, the smeared stiffeners technique that yields simpler analytical solutions can be 

. n x  a a 3 a  F 
used if F1 is close to F2. For example, if f (x) = sln-~- and x, = ~, ~ and -4-" ~ = 2.414 and 

Fz = 2.546, i.e. the error associated with the smeared stiffeners technique is 5.5%. However, 
if the number of stiffeners is reduced to two, i.e. x~ = 0.333a and 0.667a, F~ = 1.732 and 

a 
F2 = 1.910, so that the error increases to 10.3%. In the case of one stiffener located at x~ = ; 

the error is equal to 27.3%. This explains why the smeared stiffeners technique should be 
applied with caution if the number of stiffeners is small. 

G O V E R N | N G  E Q U A T I O N S  

According to the assumption of continuous in-plane deformations, displacements in the 
x and y directions at a point located at a distance z from the middle plane are: 

U = u (x ,  y)  + zU?x(x, y )  

V = v(x ,  y ) +  z q ' y ( x ,  y), (8) 

respectively. 
The linear mechanical strain-displacement relationships corresponding to the first-order 

shear deformation theory tacitly introduced through Eqns (8) are: 

C x = U x + ZtrtJx. x 

,S,y = l_~ y + Z k ~ y , y  

r,x~ = u.~. + v.~ + z(qJx.~, + q~y,~,) 

~,y, = t p y  q_ w . y  

e, xz  = ut~ x + w , x  

c: = 0. (9) 
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The constitutive relations for a honeycomb core material are: 

(10) 

If the core is transversely isotropic, Gc~ = Gc r = G~. 
The stress-strain equations for the k-th layer in the facings read 

f xt F °11 o161I x } a, = 052 Q~6| e ,  • 

a~, / sym Q66J ~ ,  

(11) 

The stress-strain equations for piezoelectric stiffeners can be obtained from the inverse of 
Eqns (2) and (4): 

E 
trx - 1 - ~ 2  [-/~x -t- l/2•y - (1 + N)d31 E~] 

E 
ar -- 1 - -  ~2 2 ['/~y -t- # • x  - -  (1 +/~)d31E~] 

trxr = Gexy, (12) 

and: 

{a,z, axz} = G' {e,z, exz}, (13) 

respectively. The latter equations are needed only if the stiffeners are shear deformable. 
Note that if a stiffener is bonded to the outer surface of the facing rather than embedded 

within it, the stresses that have to be accounted for can be reduced to normal stresses in the 
stiffener axis direction and transverse shearing stresses (in the case of a shear deformable 
stiffener). The corresponding stress-strain equations can be obtained from Eqns (12) and 
(13), where # = 0. On the other hand, if the stiffener is embedded within the facings, in-plane 
normal stresses in the direction perpendicular to the stiffener axis and in-plane shearing 
stresses have to be included in the analysis. This reflects the continuity of in-plane 
displacements that is attributed to perfect bonding between the stiffener and the facing. 
Torsional stiffness of strip-stiffeners and associated stresses are neglected in this paper. 

The stress resultants and the stress couples are defined in the customary manner by 
integrating the corresponding stresses and the moments of these stresses about the middle 
plane through the thickness of the structure. They can be represented as follows: 

Ni = N'i + N7 

Mi  = M; + M7 

Qj = Q~ + OS, (14) 

where i = x, y and xy,  j = yz  and xz, the quantities with a prime indicate the contributions 
of the facings and the core, and those with double prime refer to the contribution of 
piezoelectric stiffeners. Note that Q] appears only if the stiffeners are shear deformable. 

The three types of stiffeners included in the analysis are: 

• stiffeners bonded to outer surfaces of the facings and working in a state of plane stress 
(plane-stress stiffeners); 

• shear deformable stiffeners bonded to outer surfaces of the facings; 
• plane-stress stiffeners embedded within the facings (Fig. 2). 

Consider contributions of the core, stiffeners and facings to the stress couples and stress 
resultants. 
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FIG. 2. Cross-sect ion of a plate  wi th  the piezoelectr ic  stiffener; 1 = facing, 2 = core, 3 = cross- 

sect ion of the stiffener, 4 = midd le  surface of sandwich.  The wid th  of the stiffener is b~, the height  is 
(zi: - z,~ ). 

1. Contributions of the core (Q~) 
By definition, 

Q,. = i hI2 
j aj dz = Ge ~,j h. (15) 

J -  h~ 2 

Using notation of the theory of composite and sandwich plates, one can write 

= + W , r  

where A~4 = Gcrh, A~5 = Gc~h. 
2. Contributions of shear deformable stiffeners to transverse shear stress resultants (Q;') 

Qr = ~(x - x,)ar~d(2A,) 
A~ 

Q~ = ~ [  ~ ( y -  yjax~d(2A~). (17) 
S ,J2  A s  

Coefficient 2 in Eqns (17) accounts for two stiffeners, each of them with the cross-sectional 
area As or A, that are symmetric about the middle plane. Accordingly, 

Q;, = 2 ~  6(x - x,)G' A~(q? r + w.r) 
r 

. 

Q~ = 2 ~ 6 ( y -  yjG'A~(°dx + w j .  (18) 
s 

Contributions of plane-stress stiffeners bonded to outer surfaces of the facings (Ni', M I') 
The stress resultant N~ and the stress couple M~ in the stiffeners oriented along the x-axis 

are: 

{N~,M"} = ~ f2a 6 ( y -  ys)gx{1, z}d(2As) .  (19) 
$ w ,  s 

Transformations yield: 

g " = 2 ~ f i ( y - y ~ ) E  A , u . x - ~ d 3 t  A, 
s 

M " = 2 2 6 ( y - y ~ ) E  l~Wx, x - ~ d 3 ,  As 
s 

The integrals in the right side of Eqns (20) account for the possibility of different electric 
fields applied to the stiffeners bonded to the upper and lower facings. If these fields are 
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identical, i.e. E~ = E.(x, y) is the same in the stiffeners on the opposite surfaces of the 
sandwich (in-phase voltages), 

N.~ = 2 ~ 6 ( y  -- y.)EA.(u,x -- d31E,) 
$ 

M% = 2 ~ 5 ( y  -- y,)EIs~Fx.~. (21) 
$ 

In this case the piezoelectric effect affects the stress resultant while its contribution to the 
stress couple is equal to zero. On the other hand, if electric fields of opposite signs are 
applied to the stiffeners symmetric with respect to the middle plane of the sandwich 
(out-of-phase voltage), 

N:  = 2 Z a ( y  - y,)EA.u,:, 
$ 

M~ = 2 ~ 5 ( y -  y,) E( I,~F.,,..,, - dalE~F.). (22) 
s 

In Eqns (22), the piezoelectrically induced stress resultant is equal to zero, but the piezoelec- 
tric stress couple is present. 

Note that a comparison of the effectiveness of active control of orthotropic plates using 
piezoelectric stiffeners bonded to the opposite surfaces and in-phase or out-of-phase 
voltages was presented by Birman and Adali [12]. It was shown that out-of-phase voltages, 
i.e. piezoelectric stress couples, are much more effective for active control of transverse (out- 
of-plane) motion than in-phase voltages and associated stress resultants. 

The contributions of the stiffeners oriented in the y-directions are: 

N~ = 2Y,,~(x- x,)E[A,v.,- l ~da, A,E'd(2A')] 

,, [ 1 f2 zE:d(2A,)]" (23) M r = 2~fi(x, -- x,)E l, Wr, , - ~dsl .,4,. 

4. Contributions of the facings (the case where the stiffeners are bonded to the outer surfaces) 
The customary approach yields: 

N ; } =  A22 A26|S v,, 
N~rJ LSy m A66J[U.r+v,~ 

where: 

r° °12 °161I" l M; -- 022 026 / %:, , 
N'r Lsym D66J [ vx.r + %,x) 

f 
h/2 + h t  

Aq = 2 Qiidz 
d h/2 

~ h/2 + hi 

Do = Qq z 2 dz 
2 d h/2 

(24) 

(25) 

5. Contributions of plane-stress piezoelectric stiffeners embedded in the facings (N~', M I') 
In this case, the stiffeners act as parts of the facings and their stress-strain relationships 

are given by Eqns (12). For the stiffeners oriented in the x-direction, one obtains: 
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M~ = 2 ~ 3 ( y  
s 

M; = 2 Z 6(y 
s 

N;:, = 2 ~ 6(y - y~)GAs(u,y + v,~) 
S 

- Y ~ ) E , [ I s ( U ~ , . ~ + # ~ . x ) - ~ ( l + ~ ) d 3 ~ f 2 A  zE:d(2A,)]  

,, 1 
M~y = ~ - ys)Gl~(W~.y + W). ~), (26) 

where/~ = E/(1 - pz). 
Note that Eqns (26) are obtained by assumption that embedded piezoelectric stiffeners 

are perfectly bonded to the facings so that deformations in the stiffeners and in the facings 
are continuous. 

If each couple of stiffeners on both sides of the middle plane is subjected to in-phase 
electric fields, S2a~Ezd(2As) = 2EzAs and S2AszEzd(2As)= 0 in Eqns (26). In the case of 
out-of-phase electric fields, I2A, Ez d(2A,) = 0 and ~2A, ZEzd(2A,) = 2EzF,. 

The contributions of the stiffeners oriented in the y-direction can be obtained from Eqns 
(26) by replacing 6(y - y,) with 6(x - x,), and As and 1~ with Ar and I,, respectively. 

6. Contributions of the facings that contain embedded piezoelectric stiffeners (N[, M~) 
Eqns (24) must be replaced with equations that reflect the absence of the facing material 

in the regions occupied by the stiffeners (Fig. 2). Accordingly, the stress resultants and 
couples given by Eqns (24) must be reduced by: 

{AN'I, AMI} = ~ 6 ( x -  xr)b, (ri{1, z}dz  + (ri{1, z}dz  
r r l  Z r  2 

+ F ~ ( y  - ys)b~ ~r~{1, z}dz + ~r~{ 1, dz (27) 
S s l  Z s 2  

where b, and b~ are the widths of the respective stiffeners, and positive numbers z,1, zr2, z.,~, 
Z,z are the coordinates of the interfaces between the piezoelectric stiffeners and the facings 
(Fig. 2). 

As a result of subtracting Eqns (27) from Eqns (24), extensional and bending stiffnesses in 
the latter equations must be modified, i.e. A~ ~ A~j and D~j ~ D~j, where: 

fz" I ] Qijdz + ~ 6(y - ys)b~ zs, Qijdz 
r l  S 

Qijz2 dz + ~ 3(y - y~)b~ Qi~z2 dz . 
r l  S Z s l  

(28) 

If the smeared stiffeners technique is applied, Eqns (28) are modified accordingly, i.e. 
Y , , 6 ( x  - x , )  --, l ;  1, Y sa(y - y , )  t ; ' .  

7. Summary of stress resultants and stress couples 
Consider expressions for total stress resultants and stress couples for all cases discussed in 

the paper. 

Case A: plane-stress stiffeners bonded to the outer surfaces of the facinos. Combining 
Eqns (16), (20), (23) and (24) one obtains: 

{ N }  = [ o  O]  { 8 ° } -  { N ; }  (29, 

{Q} = [G,]h{' /} ,  (30) 

where N, M and Q are the vectors of in-plane stress resultants, stress couples and transverse 
shear stress resultants, respectively. The vectors of middle plane strains and the changes of 
curvature and twist are defined as: 
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e ° = {U.x V,y U.y + V.x} T 

x -- {~Fx,x ~Fy,y ~Fx,, + ~Fy,~} r, (31) 

and the vector of transverse shear strains is: 

= {eyz ,x,} r. (32) 

The matrices ,4 and/)  are presented in the Appendix. The matrix [-Gc] is given in the right 
side of Eqn (10). The components of the vectors of piezoelectric terms in Eqn (29) are: 

{N,x, m,x} = d 3 1 E ~ f ( y -  y~) f E.{1, z}d(Za,) 
s d 2As 

{Npy, Mpy} : -  d31 E ~  6(x - x,) f Ez { 1, z} d(2A,) 
r ,)2Ar 

{Npxy, Mpxy} = 0. (33) 

Case B: shear deformable stiffeners bonded to the outer surfaces of the facinos. Eqns (29) 
remain valid. However, Eqns (30) must be replaced with: 

{Q} = [.4] {y}, (34) 

where [.4] is a diagonal matrix of the second order whose elements are given in the 
Appendix. 

Case C: plane-stress piezoelectric stiffeners embedded in the facinos. In this case, Eqns (16), 
(24) and (26) must be combined. The stiffnesses Aq and D o in Eqns (24) must be replaced 
with A[j and D~j defined by Eqns (28). The result is similar to Eqns (29) and (30), although the 
matrices ,4 and/), as well as piezoelectric terms in N~ and M r are different (see Appendix). 

8. Equations of motion 
Equations written in terms of stress resultants and stress couples correspond to the 

first-order shear deformation theory [,13]: 

Nx.,, + Nxy,y = lxji + I2¢~x 

Nxy,x Jr Ny,y = I1/~ + 12(Py 

Q~,x + Qy,y + (N~w,x + Nxyw,y),~ + (N~yw,~ + Nyw,y)., = q + I1~ 

M~, ~ + M~y,y -- Qx = I 3 ~  + I2/i 

Mxy,~ + My,y - Qy = 13(~y + I2/~, (35) 

where q is a transverse load (in the z-direction), and 11, 12 and 13 are normal, coupled 
normal-rotary, and rotary inertia coefficients, respectively, given by: 

{I1,I2, I3} - L {1, z, zZ}pdz.  (36) 

Note that nonlinear terms in the third Eqn (35) must be omitted. Therefore, underlined 
terms in the left side of this equation should read: 

-- [ '(Npxw,x).x Jr (Npyw,y).y] + lq,,w, xx + 2Nxyw,~y + bTyw,yy, 

where the quantities with an overbar indicate applied in-plane loads. 
If the stiffeners are bonded to the outer surfaces of the facings, 

11 = pch + 2p~.hl + 2 ~ 6 ( x  - x.)ppA, + 2~.6(y  - y~)ppA~ 
r $ 

12 = 0 

p~h 3 2 

+ 2 ~ 6 ( x  - x , )p f l ,  + 2Y '6(y  - y,)ppIs, 
r s 

(37) 
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where Pc, Pl,  and pp are mass densities of the core, facings and piezoelectric materials, 
respectively. The coupled inertia coefficient, 12, is equal to zero because of the symmetry of 
the structure about the middle plane. If the stiffeners are embedded in the facings, the inertia 
coefficients become: 

I~ = p~h + 2pfh  I + 2 ~  6(x  - x , ) ( p p -  p f ) A  r + 2 ~ ( y  - -  Y s ) ( P p  - P t)A,~ 
r s 

12 = 0 

I3 = ~ -  

+ 2 ~ 6 ( x  - x r ) ( p p -  p f ) l r  + 2 ~ 6 ( y  -- Y s ) ( P v -  py)ls .  (38) 
r s 

The substitution of Eqns (29) and (30) or (34) into equations of motion (35) yields 
equations of motion in terms of generalized displacements that are similar to those 
presented by Reddy [13] for shear deformable composite plates: 

where 

ILl  {A} = { f } ,  (39) 

{A} = {u, v, w, q'x, q , } r  

{/}  = {Up . . . .  Upy, r, q, M ,  . . . .  Mp, , , }  r, (40) 

and [L] is a symmetric matrix of differential operators with the following elements: 

~ 1  = A11dl l  + 2A16d12 + A66d22 - I l d ,  

~13 = £~14 = £P15 = £P23 = ~24  = £~2s = 0 

5~22 = 2Az6d12 + A2zd22 + A66d11 - I l d  . 

LP33 = - A s s d l l  - -  A 4 4 d 2 2  - l l d t t -  Iqxdll  - 2iqxyd12 - -  ]~yd22 

+ Np,,,ldl + Npxdll  + Npy,2d2 + N p y d 2 2  

~a34 = A~sda 

~ 3 s  = - A~44dz 

~'(~744 = Dladlx + 2D16da2 + D66d22 - Ass  - 13dtt 

&a45 = (D12 + D66)d12 + D16dll  + D26d22 

£~'55 = 2D26d12 + Dzzd22 + D66dxl - A44 - 13d,,. (41) 

In Eqns (41), dij = 02/t3xlt?xj (Xl = x, x2 = y), d ,  = t32/Ot 2. 
Equations of motion (39) must be complemented by boundary conditions. Kinematic 

conditions in terms of displacements and bending slopes can be immediately formulated. 
Static conditions are given in terms of stress resultants and stress couples introduced by 
Eqns (14). Note that if piezoelectric stiffeners are not extended to the boundaries, N~' M~' and 
Q~' in the boundary conditions are equal to zero. 

The system of Eqns (39) can be used for the analysis both in the case where piezoelectric 
strips work in the sensor mode, as well as if they are used as actuators. In the former case, 
the response can be considered by assumption that voltages generated in the sensors as 
a result of deformations are too small to affect the behavior of the structure. This 
assumption that has been proven for various structures and loading regimes is tacitly 
accepted in almost all studies of piezoelectric sensors. 

Accordingly, the response of the sandwich plate can be found from Eqns (39) without 
piezoelectric terms. Then the electric field and the corresponding voltage in piezoelectric 
sensors can be obtained using their constitutive equations. For  example, for the strips 
bonded to the surface of the plate and oriented in the x-direction the first and the fourth 
Eqns (1) yield: 

d31 E ex (42) 
Ez -- d21E _ er 3. 
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The voltage generated in the sensor can be obtained as shown in Ref. 1"14-1. In the case where 
terminals (connecting points) on the sensor are closely spaced, 

d3tE fh 
= 2 . . . .  r ex dz. (43) 

d a l E  - saa p 

If the piezoelectric strips are used as actuators, the response of the plate can be calculated 
from Eqns (39) where piezoelectric terms are treated as loading terms. In some situations 
certain piezoelectric strips can be used as actuators, while other strips work in the sensor 
regime. If actuators and sensors work in couples, i.e. each couple of piezoelectric strips that 
are symmetric about the middle surface includes either sensors or actuators, the present 
theory can be used without modifications. If each couple of piezoelectric elements includes 
one sensor and one actuator, the theory can be modified to include this case. However, this 
modification is straightforward because it is confined to the loading piezoelectric terms. 

C O N C L U S I O N S  

A comprehensive theory of sandwich plates with piezoelectric strip-stiffeners bonded to 
the surface or embedded in the facings is presented. The layers of composite facings can be 
arbitrarily oriented. The core can have different transverse shear stiffnesses in the directions 
of the plate axes, as is the case for a honeycomb core. The formulation for a transversely 
isotropic core is obtained as a particular case. Embedded piezoelectric stiffeners are 
modeled using the plane stress assumption. The stiffeners bonded to the surface of the 
sandwich can also be assumed in the state of plane stress. An additional model considered 
for the stiffeners bonded to the surfaces of the sandwich incorporates transverse shear 
deformability. The paper presents governing equations of motion and the boundary 
conditions. These equations can be used both in the case where the stiffeners are used as 
sensors, as well as if they work as actuators. 
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A P P E N D I X  

Elements of the matrices ,4 and / )  in Eqns (29) for case A (plane-stress stiffeners bonded to the outer surfaces of 
the facings): 

Elements of the matrix A in Eqn (34) 
facings): 

Elements of matrices ,4 and / )  in 

A** =A~I + 2 ~ 6 ( y  y~)EA~ 
s 

A22 = A22 + 2~6(x  - x , )EA•  

/1o=/ t~ ,  i f ( l : ~ l l  or 22 

Dt~ = O~ + 2 ~ 6 ( y -  y~)El~ 

022 = Oz2 + 2 ~ 6 ( x  - x r ) E l ,  
r 

0 o=D~ s. if!j:~ 11 or 22. 

for case B (shear-deformable stiffeners bonded to the outer surfaces of the 

s 

/ i ,5 = / i ~ 4  = 0. 

Eqns (29) for case C (plane-stress stiffeners embedded in the facings): 

/~16 = D]6 /)2o = D~6. 

Components of the vectors of piezoelectric terms in Eqns (29) for case C: 

{ N e = ' M w } = d 3 ' g ( l + ~ ) [ ~ a ( Y - Y O f z  a, E={1, z}d(2A,)+~6(x--x,)f, , )  2 A .  Ez{l 'g}d(gAr)l  

Nvy= N w Mvr= My, 

{ Nwr, Mwr } = O. 

/ )~ = D'~ + 2 ~ 6 ( y -  y.0/~l, + 2~6(x  - x,)ff~1• 
,s r 

s • 

r 

s r 

s r 

s r 

A21 = A,2 


