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Problems of Dynamic Buckling of Antisymmetric 
Rectangular Laminates* 

Victor Birman+= 
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ABSTRACT 

Dynamic buckling of  antisymmetrically laminated angle-ply rectangular 
plates due to axial loads proportional to time and axial step loads is 
considered. The nonlinear response Of initially imperfect plates is 
determined from the numerical solution Of the governing differential 
equation. In the case of the step loading this" equation can be solved 
analytically. 

In the particular case of a perfect plate the solution of  the linear problem 
yields the condition of dynamic buckling. Another problem considered in 
the paper is the behavior of an imperfect plate initially loaded by axial static 
stresses. The static response is determined )qrst and the motion of the plate is 
superimposed on the static disphtcements in the second phase of  the solution. 

1 INTRODUCTION 

The problems of dynamic buckling of structures are usually associated with 
their response to rapidly increasing in-surface compressive loads or time- 
dependent in-surface displacements of the boundaries. The problems of the 
first type are typical for structures subject to impact, while the second type is 
particularly important in the studies of the response of structures in testing 
machines. The analytical approach to the solution of the linear dynamic 
buckling problem in the case of axial load or displacement of the boundaries 
proport ional  to time was proposed by Hoff, ~ who investigated the response 
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Structures--4, ed. I. H. Marshall. Elsevier Science Publishers, London, 1988). 
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of a slightly curved elastic column with the ends axially displaced towards 
each other at a constant speed. The solution of the problem found in terms 
of Bessel functions appeared to be in good agreement with experimental 
results.2 The problems of dynamic buckling of isotropic structures subject to 
loads proportional to time were treated numerically and experimentally by 
Vol'mir, 34 Ari-Gur et al.,~ Babich and Khoroshun, ~ and Brigadirov and 
Tolokonnikov.7 A survey of works related to dynamic buckling of cylindrical 
shells can be found in the recent book of Bogdanovich. ~ 

The recent paper of Saigal et al. ~ presented the finite element analysis of 
dynamic buckling of thin shells and a bibliography on dynamic buckling of 
spherical shells subjected to step or impulsive load. 

Ekstrom considered dynamic buckling of initially imperfect geometrically 
nonlinear simply-supported rectangular orthotropic plates subject to the 
compressive load increasing proportionally to time. 1,, The problem, reduced 
to a single second-order nonhomogeneous differential equation with time- 
dependent coefficients, was solved numerically using a fourth-order Runge-  
Kutta method. 

The theory of dynamic buckling of single degree of freedom systems due 
to step loading was developed by Budiansky and Hutchinson, 11~: 
Budiansky 13 and Elishakoff.14 They derived the relationships between the 
critical step load and the amplitude of the initial imperfection for structures 
with cubic, quadratic and quadratic-cubic nonlinearities as well as the 
conditions of imperfection-sensitivity or insensitivity. 

In this paper dynamic buckling of simply-supported imperfect angle-ply 
plates due to a time-proportional axial load and a step load is considered. 

In the first problem the nonlinear dynamic deformations of initially 
imperfect plates subjected to a time-dependent axial load are studied. The 
second problem is formulated as a particular case of the first one, i.e. initial 
imperfections are absent and the equations of motion are linear. This results 
in the question on the conditions of dynamic buckling of the perfect plate. 
Such a condition is found in the practical case where the plate is at rest at the 
instant of application of the load. The third problem deals with the dynamic 
response of an imperfect plate which was initially subject to an axial static 
load. The static deformations have to be determined in the first phase of the 
solution. Then the dynamic displacements due to the action of the time- 
dependent load are superimposed on the static solution. 

2 DYNAMIC BUCKLING OF IMPERFECT PLATES: 
NONLINEAR PROBLEM 

Consider an antisymmetrically laminated angle-ply rectangular plate 
subject to the axial compressive load of intensity Nx( t ) ,  which is a function of 
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Fig. 1. Plate subjected to axial loading: (a) Dimensional scheme: (x, y, z) = (X, Y, Z)/h; (b) 
nondimensional  scheme: h = a/b. 

time (Fig. 1). The sides of the plate along the X and Y axes have the lengths a 
and b respectively. The thickness of the plate is h. The rate of loading is such 
that the time required for the plate to obtain considerable deformation is 
much longer than the time required for the pressure wave to travel through 
the plate. This allows one to neglect the effect of the axial inertia. 15 

The equations of the nonlinear theory of laminated plates with initial 
imperfections, representing the generalization of the equations of the von 
Karman theory of isotropic plates, were published by Stavsky and H o f f  16 

and Tennyson e t  a l .  17 In this paper the nondimensional dynamic version of 
the equations used by U u i  ~8'~9 is adopted: 

Ld (W) + Lb ( f )  + rr 4 w . .  = f.yy (w + Wo).xx + f.xx (w + Wo),yy 

--2f, xy(W + WO),xy (1 )  

L , ( f )  = Lb(w ) + (w + 2Wo),xyWxy 

- ( w  + Wo),xx w y~ - Wo..,  W.xx (2) 

In eqns (1) and (2) w is the nondimensional out-of-plane displacement 
from the imperfect position, w0 is the nondimensional initial imperfection 
and f is  the nondimensional stress function: 

w = ff~/h; Wo = ff~o/h; f = F/ET h3 (3) 

where w, w0 and F are the out-of-plane displacement, initial imperfection 
and the Airy stress function, respectively, and ET is the modulus of 
elasticity of a lamina in the transverse direction. The nondimensional time is 
defined as 

r = ~ t  (4) 
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where 

~o :- 77-%' l : r  l / p t  

p being the mass of the plate per unit area. 
The nondimensional coordinates are 

.v= X/b v = Y/h 

(5) 

(6) 

so that the lengths of the plate sides are X = a/b and 1 (see Fig. 1). The linear 
operators in (1) and (2) are given by 

L.( ) = a22 ( ) . . . . . . .  + (2al_~ + a ~ ) (  ).~x,.v+a,,( ).,.,.,., 

Lb( ) = (2b26 - b61)( ) . . . . . . . . .  --~ (2b,o - b62)( )...,. 

Ld( ) = dr1( ) ...... +2(d12 + 2 d ~ ) (  ).x.,,, + d:2( ),vv,:~, 

(7) 

where a 0, b u and d u are the elements of the nondimensional matrices ['4u], 
[Bu] and [D~i], defined by 

[ A u ]  = ETh[A,,]-' 
{~ , , ]  = - [A , , ]  '[n,~]lh 
E T t r  [O,~] = [Di~] - [B,y][A,~] ' [B , , ]  

(8) 

The matrices of extensional, coupling and bending stiffnesses, [Au], [Bii] 
and [Dq], are defined as usual in the theory of composite structures. 

The initial imperfection and the transverse displacement of the simply- 
supported plate are given by 

m w x  m 7 7 x  . 

w, = W0sin sinnTrv w =  W(r ) s in  smnTrv (9) 
h h 

The substitution of (9) into (2) yields the nondimensional stress function: 

,[ cll W(r)cosmrrx ( 2mTrx ) = cosnTrv+[WZ(r)+2W('r)Wo] Q c o s  + c2 cos2nTrv 
h h " 

N ( r ) v  2 (10) 
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where ci are  defined as in Ref. 18: 

c2 = (32n 2 an)  

Here 

(11) 

kl = 1 Ca ,n + 

l ( m )  2 
k, = ~-y --~ N(r)  

k 2 = 6 n2(cl +c2)Wo 

k 3 = 2  ~ n 2(c~+c2) 

CZb(m/X'n) + 4  n2(cl +cz)W 2 
Ca(m/h,n) 

(15) 

) ,3 , n = (2b26 - b61) nTr + (2b16 - b 6 2 )  ---~-- tnTr; 

(12) 

Ca ,n = a22k--'ff ) +(2a,2+a66) (nrr)2 +au(mr )  4 

The nondimensional load is 

/~x ('r) b 2 
N(r)  - Eyh3 (13) 

The substitution of (9) and (10) into equation of motion (1) and  the Galerkin 
procedure result in the following nonlinear differential equation: 

W ( T ) , r v  + kl W(~') - kr W(r) + kz W 2 ('c) + k3 W 3 (T) = kr Wo (14) 

The coefficients of  this equation are 
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where  

Ca ,n  = dll + 2(d12 + 2d~) + d22rt4 4 (16) 

Equat ion  (14) can be integrated numerically for any analytical relation- 
ship N(T) including the case of the load proportional to time as it was done in 
the numerical  examples. The plate is usually at rest at the instant of  
application of  the load, i.e. the initial conditions to be used are 

W =  W,, = 0 at T = / /  (17) 

3 D Y N A M I C  B U C K L I N G  O F  P E R F E C T  PLATES S U B J E C T  T O  
A X I A L  L O A D  P R O P O R T I O N A L  TO TIME: 

C O N D I T I O N  O F  B U C K L I N G  

Consider  a linear problem of dynamic buckling of the perfect plate subject 
to the load 

N(~) = s~- (18) 

where  s is a coefficient representing the nondimensional rate of loading. The 
equat ion of  motion is obtained from (14): 

W(r) ,~  + (k~ - c~-) W(T) = 0 (19) 

with c = ( s / ~ )  (m/h) 2. 
The solution of  such equations was considered by Hoff , '  Kamke 2° and 

Watson.  2~ Introducing the new variables 

= k~-cT v/ = W0-) (20) 

one can transform (19) to 

c 2 ( d 2 D / d ¢ )  + ('r/ = 0 (21) 

The solution of  (20) is 2° 

~o = ~,.5 [AJ~/3 (~J5 / 1-5c) + BY,~3 ((J5 / 1-5c)] (22) 

where  A and B are constants of integration, and J1/3( • • • ) and Y v 3 ( -  • • ) 
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are the Bessel functions of the first and second kind respectively. Using the 
initial conditions (17) one obtains the set of two homogeneous algebraic 
equations: 

A.t, ,( /<,) + 8 Y , , ( ~ , )  = 0 

kl 
A {~Jll3Cki)+~c[J-2/3(kt)-J4/3(~k,5] } 

+ ~ [ Y _ ~ , ( ~ )  - + B  

where 

~kl = k iS I1 .5c  

The condition 

(23) 

= 0  

(245 

of dynamic buckling of perfect antisymmetrically 
laminated plates can be obtained from (23) if one requires the existence of a 
nonzero solution. This condition can be written as 

Yli3(kl)[J-213(kl)- J4/3(klS] = Jli3(lclS[Y_213(]¢i5- y..1/3(]¢1)] (255 

The coefficient kl can be evaluated from (25). This coefficient represents 
the relationship between kl and c corresponding to dynamic buckling. If the 
analysis indicates that elastic dynamic buckling does not occur but the load 
increases as given by (18) the plastic effects have to be considered. 

4 DYNAMIC BUCKLING OF IMPERFECT PLATES 
SUBJECTED TO CONSTANT AXIAL LOAD PRIOR TO 

THE LOAD PROPORTIONAL TO TIME 

Consider an imperfect plate subjected to axial loading ~'~0 = const. The 
plate will experience a static deformation ws which can be found from the 
static version of eqns (1) and (2). The mode shape of the dynamic displace- 
ment is assumed to be the same as those of the static displacement and initial 
imperfection: 

{~, ws, w0} = (l~'(r), Ws, W0} sinmrrXsinnTry 
h 

(26) 

The stress function is given by (10), where N(r) must be replaced by 

No = ~lxob2 /Eh 3 (277 
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and W ( r )  must  be replaced by W, = const. The  static out-of-plane dis- 
p lacement  can be de termined  from 

kl W, - k<)W~ + k2 W~ + k, W2 = k0 W() (2~) 

where  k~, k 2 and k3 a r e  defined as in (15) and 

k,) = 7 ~ - X -  -N,, (29) 

Now the dynamic  axial load ~/~,(r) is applied to the plate. The  mot ion  of the 
plate due  to this load will be superimposed on the basic static state. 
Equa t ions  of mot ion  of the plate become 

L,(~,) + C~O') + ~ .4w,  = t,,.,.(~, + Wo + w).~ +L.>. w.~x + L.x(W, + Wo + ~').,.,. 

+ f.xxfV.v>.- 2-f.~y(W, + Wo + ~v),~,.- 2f..~,.~v..,y (30) 

L . ( f / =  Lb(~') + (w, + 2w,, + w).x,. ~'.,,. + ~>..,,. w,> 

- (w~ + wo + fv), . .  )~' ,.,. - w..~x w,>,,, - Wo,>,>, ~.' ~., (31) 

where  ~v and ~r are dynamic fractions of the nondimensional  out-of-plane 
d isp lacement  and the stress function defined by equations similar to (3). 

The  subst i tut ion of the expressions for the static and dynamic displace- 
ments  and the initial imperfection into (31) yields 

f = co I,V cos m T r x  cos nrry  + (2 W~ + 2Wo + I~ )  
h 

) N~(r)V2 
2rnTrx + c~ cos 2 n r r v  " " cl cos ~. . . 2 

(32) 

where  

(33) 

Finally the equat ion of mot ion  obtained from (30) after the substitution of 
w0, w,, fi~, f,  f and the application of the Galerkin procedure  is 

W(T),rr -~'-Pl W(T) --pr2(T) W(T) Jc-p2W2(T) ~- p3 ~[3(T) ~" prl (T) (347 
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where  

p, = ~ Cd ,n + Ca(m/h,n) J 

1(_:)2 
+2 n2(c~ +c2)(3w~+6wows+2w?,)- -~ No 

P2 = 6 n2(Cl + c2)(Ws + Wo) 

(35) 

P3 = 2 n2(cl + c2) 

P,1(r) = -~ --~ (Ws + Wo)Nx(r) 

P~2 (r) = -~ Nx (r) 

Equa t ion  (34) can be integrated numerically. 
The  initial condit ions corresponding to the plate being at rest at the 

instant  of load application are 

= I,~'T = 0  at r = O  (36) 

5 D Y N A M I C  B U C K L I N G  OF P L A T E S  SUBJECT TO 
STEP L O A D I N G  

If the plate is subject  to the step load 

N(r)  = N at r->0 

N(r)  = 0  at r < 0  

its dynamic  response is governed by a modified eqn (14) where 

2 

kT = kT = n.2k h ] N = constant 

(37) 

(38) 
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The response can be found numerically by integration of the modified eqn 
(14) with the appropriate boundary conditions. Note that this equation is 
also the equation of free nonlinear vibrations of the plate statically 
compressed by the axial loads of intensity N. Therefore, the response can be 
expected to be a periodic motion; the period and the amplitude of this 
motion have to be determined. 

The relationship between the nondimensional period and the amplitude 
of motion described by the modified eqn (14) can be also obtained 
analytically using a method similar to that applied by Elishakoff et al. 2~ to 

investigate nonlinear free vibrations of imperfect bars. 
The multiplication of both parts of the modified eqn (14) by dW and the 

integration yield 

l / 2 W 2 ( r ) , ~  = - 1 / 2 ( k l  - k T )  W 2 ( r )  - 1/3k2 W3(r) - l/4k3 W4(r) 

+ k~ Wo W(r) + C (39) 

where C is a constant of integration. This constant can be found from the 
condition that the velocity of the plate is equal to zero at the time instant 
corresponding to the maximum deviation from the equilibrium: 

W(r),~ = 0 when WO') = Wm (40) 

Here Wm represents the amplitude of periodic motion. 
Substituting (40) into (39) and integrating one obtains 

f w d14~ 
- To = t 

(tO) 
(41)  

where 

~/ = W( 'T ) /W m (42) 

and 

F(I , t / )  = (k ,  - k~.)(1 - 1~ '2) + ~k2 Wm(1 - I'V 3) 

+ ' k3  W~(1  - i f , ' )  - k ,  Wo( I  - (43) 

~/0 = Wo/Wm (44) 
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As was shown by Jeffreys and Swirles 23 the period of mot ion  described by 
(41) can be represented  as 

2 ["~q dW T =  
2 [F(~ '  )] 1/2 

(45) 

where  ff'l and ~¢V2 are two simple roots of the polynomial  F(W).  One  of these 
roots  is if" = 1 as follows from (43). The  second root should satisfy the 
equa t ion  

~3 + r ~ 2  +Sff-4-S = 0 (46) 

where  

4k2 
r = l + ~  

3k3 Wm 

kl -- kT 
s = r + 2 ~  

k3 W 2 

(47) 

The  cubic equat ion  (46) can be solved by standard methods ;  the 
discr iminant  of this equat ion being 

D = (p/3) 3 + (q/2) 2 (48) 

In (48) 

p = s -  rZ/3 

q = 2r3/27 - rs/3 + s (49) 

The  sufficient condit ions for the discriminant (48) to be positive are 

I W0] << Wm and N ( (  Ncr (50) 

where  

N c r =  ~'2k I (51) 

is the static buckling load of the plate corresponding to the m o d e  with rn and 
n half-waves in the direction of the axes x and y respectively. 
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If the conditions (50) are satisfied and the discriminant D is positive 
(which can be the case even if (50) is not satisfied) eqn (46) has one real and 
two complex roots. Then the period of nonlinear motion can be found 
exactly in terms of a complete elliptic integral following the procedure 
outlined in Ref. 22. The relationship T(Wm) represents the solution of the 
problem of dynamic buckling of the nonlinear imperfect plate subject to 
step loading. 

The condition of dynamic buckling of linear perfect plates subject to step 
loading is immediately obtained from the equation 

(52) 

The natural frequency turns out to be zero thus indicating buckling of the 
plate at the static buckling load given by (51). 

The solution of the problem of dynamic buckling of the plate subjected to 
constant axial load prior to the step loading is very similar to that outlined in 
Section 4. The modified eqn (34) has constant coefficients 

1 I r a \  ~- W pT,(r) =fi~l =--v/~.. ~-) ( ~ + W o ) N  

(53) 

The integration of the modified eqn (34) is similar to that of the modified eqn 
(14). 

Note that the relationships between the buckling step load and the initial 
imperfection as well as the condition of imperfection-sensitivity developed 
in Refs 11-14 are not applicable in the case considered here. This is due to 
the different structure of the governing equation (14) and the equation used 
by the authors of Refs 11-14. Equation (14) includes the terms k~ W(r) and 
k2 W2(r) where the coefficients kl and k2 depend on the initial imperfection. 
In the equation of motion of the model structures used in Refs 11-14 the 
corresponding coefficients are independent of the imperfection. 

6 NUMERICAL EXAMPLES 

Numerical integration of eqn (14) was carried out by the Runge-Kutta 
method. The material of the plate was graphite--epoxy with the following 
dimensionless characteristics: 

E L / E  v = 40. Gl,v/Ev = 0-5, Vt,v = (I-25 
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The lamination angle was ___30 ° and the number of layers was assumed to be 
large so that the bending stretching coupling was negligible. 

The load was assumed to increase proportionally to time. The non- 
dimensional rate of loading was defined when the dimensional load 

Nx(t) = ~t (54) 

was replaced by N(r) given by (18). Then 

~b 2 / pb 4 

S -- 77.2 ET h ~ 4 "  E~T h3 
(55) 

The behavior of the square plate with different amplitudes of the initial 
imperfection is shown in Fig. 2. The displacements increase as a result of 
larger imperfections at the initial phase of motion. At the later phase the 
displacements exhibit a gradual growth combined with an oscillatory-type 
motion. This phase of motion is not shown since it corresponds to large 
deformations in which plastic effects are unavoidable. The effect of the rate 
of loading is illustrated in Fig. 3. 

W{~}, 
2.0 

1,0 

1,0 2.O "~ 

Fig.  2. E f f e c t  o f  initial imper fec t ions  on  dynamic  buckl ing o f  an t i symmetr ica l ly  l amina t ed  
ang le -p ly  p la tes ,  h = 1, m = n = 1, s = 3.0 (Curve  1, W0 = 0.10; Curve  2, W0 = {).25; 

Curve  3, W0 = 0-50). 

1.0 

1.0 2.0 'z- 

Fig.  3. E f f e c t  o f  ra te  o f  load ing  on  dynamic  buckl ing,  k = 1, m = n = 1, Wo = 0.25 (Curve  
1, s = 1-0; Curve  2, s = 3-0" Curve  3, s = 5.0). 
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