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Wrinkling in Sandwich
Structures With a Functionally
Graded Core
This paper illustrates the effectiveness of a functionally graded core in preventing wrin-
kling in sandwich structures. The problem is solved for piecewise and continuous
through-the-thickness core stiffness variations. The analysis is extended to account for
the effect of temperature on wrinkling of a sandwich beam with a functionally graded
core. The applicability of the developed theory is demonstrated for foam cores where the
stiffness is an analytical function of the mass density. In this case, a desirable variation
of the stiffness can be achieved by varying the mass density through the thickness of the
core. Numerical examples demonstrate that wrinkling stability of a facing can signifi-
cantly be increased using a piecewise graded core. The best results are achieved locating
the layers with a higher mass density adjacent to the facing. A significant increase in the
wrinkling stress can eliminate wrinkling as a possible mode of failure, without noticeably
increasing the weight of the structure. In the case of a uniform temperature applied in
addition to compression, wrinkling in a sandwich beam with a functionally graded core
is affected both by its grading as well as by the effect of temperature on the facing and
core properties. Although even a moderately elevated temperature may significantly
lower the wrinkling stress, the advantage of a graded core over the homogeneous coun-
terpart is conserved. [DOI: 10.1115/1.4034990]

Introduction

Sandwich structures consist of composite or isotropic facings
supported by a foam, balsa, or honeycomb core. In addition to
conventional cores, novel configurations, such as truss-reinforced
cores have also been considered (e.g., Refs. [1,2]). The facings are
thin, stiff, and relatively heavy, while the core is compliant and
light. An analogy with an I-beam where the flanges may be lik-
ened to the facings and the web to the core is well known.

Reflecting on the complexity of sandwich structures, they pos-
sess a number of modes of failure. Possible failure modes include
global modes, such as the loss of strength in the facings or core
and the overall buckling of the structure and such local modes as
wrinkling, core instability, and face dimpling over honeycomb
cells. Fracture-related modes of failure, i.e., debonding of facings
from core and delamination in composite facings should also be
considered.

Wrinkling occurs when the facing develops local buckling
waves under compression or in-plane shear. The length of the
wrinkling wave is small compared to the planform dimensions of
the sandwich panel, so that this local phenomenon is unaffected
by the boundary conditions.

The wrinkling phenomenon is local, but it depends on the
design of the sandwich panel joint and the relevant boundary con-
ditions, as was demonstrated by Frostig [3]. In particular, if the
compressive load is transferred to the panel through a rigid edge
beam resulting in equal axial deformations of the facings and
core, wrinkling occurs under controlled axial displacements, as is
typical in experimental conditions or in a panel supported by
stringers with a relatively large torsional stiffness maintaining uni-
form through the thickness axial deformations of the sandwich
structure. However, if the compressive load is applied to the core,
wrinkling is a result of controlled force loading. In the latter case,
local three-dimensional effects near the edge are prominent and
failure may occur due to the loss of strength prior to wrinkling.
Furthermore, in the cases of an unsymmetrical panel or under

bending where only one facing is undergoing compression, failure
may occur by an overall buckling of the facing, rather than
wrinkling.

There are numerous studies of wrinkling employing analytical
and numerical methods. The pioneering research was published
by Gough et al. [4], Hoff and Mautner [5], Plantema [6] and Allen
[7]. These studies employed a variety of models, including the
representation of the core as a continuous Winkler foundation,
energy methods using the wrinkle-affected depth of the core and
the length of the wrinkle as independent variables and the
elasticity-based approach. Further analyses considering the prob-
lem of static and dynamic wrinkling under uniaxial and biaxial
compression have been published by Vonach and Rammerstorfer
[8–10], Gdoutos et al. [11], Kardomateas [12], Birman and Bert
[13], Birman [14–16], Lim and Bart-Smith [17], and others. Early
work on wrinkling in sandwich structures was reflected in review
[18]. The papers by Sokolinsky and Frostig [19], Frostig et al.
[3,20], Hohe et al. [20,21], and Phan et al. [22] are examples of
work on static and dynamic wrinkling modeling the core by
higher-order theories.

In the following analysis, we start with a reference to the stud-
ies where the stiffness of open-cell and closed-cell foams was
expressed as a power function of their mass density. Accordingly,
functional grading of foam cores can be prescribed in terms of the
mass density varying through the thickness. The wrinkling prob-
lem in the case of a piecewise through-the-thickness grading is
solved both using the equations of equilibrium and by an exten-
sion of the Hoff method. An extended Hoff method is also
employed to solve the wrinkling problem for structure with a
foam core with continuously varying mass density through the
thickness. Numerical examples demonstrate that wrinkling stabil-
ity of a facing can significantly be increased using a piecewise
graded foam. The best results were achieved using denser and
stiffer thin layers of foam adjacent to the facings and lighter foam
in the interior of the core. In addition, we consider the effect of
temperature on wrinkling in a sandwich beam with a functionally
graded core. This analysis is limited to the range of temperature
that does not trigger the onset of the conversion of polymeric
materials in the facings and core into char. It is noted that even in
the case of a homogeneous core, it may become effectively graded
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due to a nonuniform through the thickness temperature and its
effect on material constants. As is demonstrated in the example,
the advantage of a sandwich structures with a functionally graded
core is preserved at an elevated temperature.

Analysis

Consider a sandwich panel where one or both facings are sub-
ject to compression. An example of the facing supported by a
functionally graded core consisting of several layers is shown in
Fig. 1. The function of the grading is to increase the wrinkling
stress by providing a stiffer support to the facing, while only mar-
ginally changing the weight of the structure. In particular, using
functional grading is feasible in foam cores where the stiffness
depends on their mass density [23]. The stiffness of polymeric
foams may also be enhanced by selectively embedding stiff par-
ticles in the foam material achieving a desirable grading
scheme [24].

The effective stiffness of foams was estimated in terms of their
mass density by Gibson and Ashby [23,25]. The moduli of elastic-
ity ðEcÞ and shear ðGcÞ of the foam were obtained in terms of the
relative mass density with respect to that of the solid foam mate-
rial and the stiffness of this material:

Ec

E
¼ k1

qc

q

� �n1

;
Gc

E
¼ k2

qc

q

� �n2

(1)

where kr and nr ðr ¼ 1; 2Þ are empirical constants, and E is the
elastic modulus of the solid foam material. The Poisson ratio of
foams was found nearly identical with that of the solid material.

Empirical constants for open-cell foams suggested in Ref. [25]
were k1 ¼ 1; k2 ¼ 0:4, and n1 ¼ n2 ¼ 2. In experiments on
closed-cell polyurethane foams Goods et al. [26] found n1 ¼ 1:7.
Triantafillou and Gibson [27] experimented on closed-cell foams
and estimated the values of the coefficients in the first Eq. (1) as
k1 ¼ 1:13 and n1 ¼ 1:71.

An estimate of the stiffness of a closed-cell foam was suggested
in Ref. [23] distinguishing between the fraction of the foam mate-
rial contained in the cell struts u and the fraction of the material
contained in the walls ð1� uÞ

Ec

E
¼ u2 qc

q

� �2

þ 1� uð Þ qc

q

� �

Gc

E
¼ 3

8
u2 qc

q

� �2

þ 1� uð Þ qc

q

� �" # (2)

Theory of Elasticity Approach to the Analysis of Wrinkling in
the Case of a Piecewise Functionally Graded Core. Consider a
foam core including thin layers of a constant mass density (and
constant stiffness) adjacent to the facing, Fig. 1. The analysis

extends the solution in paper [14] where the core stresses were
estimated using the theory of elasticity solution. This approach
enables us to exactly satisfy the stress equilibrium equation in the
thickness direction, while the equilibrium equation in the axial
direction is satisfied in the integral sense. This is an improvement
over the classical Hoff method where all equations of equilibrium
are violated.

The elasticity solution for sandwich panels and beams with a
homogeneous core was developed by Kardomateas [12]. This is a
very accurate solution, accounting for finite rigidity of the core in
both axial and thickness directions. Considering a homogeneous
core, the solution utilizes the buckling differential equations in
terms of displacements. Such equations are not valid if the stiff-
ness of the core is a continuous function of the coordinates. In
case where the stiffness tensor of the core is a stepwise function
of coordinates, the solution in Ref. [12] can be adopted though it
would require a consideration of the buckling equations for each
homogeneous layer of the core and subsequently finding the wrin-
kling stress through a satisfaction of the continuity conditions
along the interfaces of the layers. Such analysis is outside the
scope of the present paper.

Consider wrinkling of a sandwich panel or beam where the sec-
tion of the core adjacent to the facing consists of several layers.
The facing wrinkling deformation is assumed in the form

w ¼ W sin
px

l
(3)

where W and l are the amplitude and length of the wrinkle, and x
is the coordinate collinear with the applied load (Fig. 1).

The equations of the theory of elasticity in the i-th homogene-
ous layer of the core are

rðiÞx ;x þ sðiÞxz ;z ¼ 0

sðiÞxz ;x þ rðiÞz ;z ¼ 0
(4)

where all notations are standard.
The constitutive relations for an isotropic layer of the foam

core are

rðiÞx ¼ Q
ðiÞ
11ex þ Q

ðiÞ
13ez

rðiÞz ¼ Q
ðiÞ
13ex þ Q

ðiÞ
11ez

sðiÞxz ¼ GðiÞcxz

(5)

As is typical in the wrinkling analysis, the plane strain condition
implies that ey ¼ 0.

The linear strain–displacement relationships are

eðiÞx ¼ uðiÞ;x

eðiÞz ¼ wðiÞ;z

cðiÞxz ¼ uðiÞ;z þ wðiÞ;x

(6)

where u and w are the axial and transverse displacements,
respectively.

The axial displacements in the core under the wrinkle are
neglected in such models as those of Hoff and Mautner [5] and
Plantema [6]. Physically, this superimposes an additional con-
straint on the structure, increasing the predicted wrinkling stress.
While Hoff attributed a difference between his theory and experi-
mental data to initial imperfections in the facings, the effect of
such artificial constraint may be another source of such discrep-
ancy. It should be noted that wrinkling waves usually appear in
patterns including several parallel waves. The adjacent wrinkles
of the facing are antisymmetric relative to the point of their junc-
tion, so that if they were considered without a reference to defor-
mations of the entire panel, the axial displacement of the junction
point would be zero. This implies that deformation waves in the

Fig. 1 The facing of a sandwich structure supported by a func-
tionally graded core. The wrinkling stress is increased by using
stiffer outer layers: q1>q2>q3.
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core under adjacent wrinkles constrain each other’s axial displace-
ments, somewhat justifying the assumption that these displace-
ments are negligible. Assuming that axial displacements in the
core are negligible, and simplifying the strain–displacement rela-
tions accordingly, we obtain upon the substitution of Eqs. (5) and
(6) into Eq. (4) the following equations of equilibrium

wðiÞ;xz ¼ 0

Q
ðiÞ
11wðiÞ;zz þ GðiÞwðiÞ;xx ¼ 0

(7)

The solution within each homogeneous layer of the core is sought
in the form

wðiÞ ¼ XðiÞðxÞZðiÞðziÞ (8)

where zi is the thickness coordinate of the i-th layer as shown in
Fig. 1.

The substitution of Eq. (8) into the second equation of equilib-
rium (7) and the separation of variables yield

Q ið Þ
11

Zi zið Þ;zizi

Zi zið Þ
¼ �G ið Þ Xi xð Þ;xx

Xi xð Þ
¼ C ið Þ (9)

where CðiÞ is a constant that is different for each layer.
The solution of Eq. (9) is

XiðxÞ ¼ C
ðiÞ
3 sin fikixþ C

ðiÞ
4 cos fikix

ZiðziÞ ¼ C
ðiÞ
3 sin hkizi þ C

ðiÞ
2 cos hkizi

(10)

In these equations, C
ðiÞ
j ðj ¼ 1; 2; 3; 4Þ are constants of integration

and

ki ¼
ffiffiffiffiffiffiffiffi
C ið Þ

Q ið Þ
11

s
; fi ¼

ffiffiffiffiffiffiffiffi
Q ið Þ

11

G ið Þ

s
(11)

The sinusoidal shape of deformation in the core is assumed
unchanged from layer to layer implying that C

ðiÞ
4 ¼ 0 and

fiki ¼
p
l

(12)

As follows from this equation, constants

C ið Þ ¼ p
l

� �2

G ið Þ
c (13)

Furthermore, without the loss of accuracy, we can set C
ðiÞ
3 ¼ W.

Although the first equilibrium Eq. (7) cannot be exactly satis-
fied, it is satisfied in the integer sense, i.e.,

Ð l
0

w;xzdx ¼ 0. This
inaccuracy is the consequence of neglecting the axial displace-
ment adopted in the Hoff method and in the present analysis.

The mode of wrinkling was discussed by Hoff and other
researchers (e.g., see Ref. [5]) considering symmetric and anti-
symmetric patterns of wrinkles in both facings with respect to the
middle plane. The antisymmetric mode of wrinkles is rather typi-
cal for sandwich panels, as is reflected in the results in Ref. [12].
Note that in case of wrinkling of the compressed facing in a panel
subject to bending, the opposite facing is subject to tension, and it
does not wrinkle. This case can also be analyzed using the present
solution.

In the first case considered here, wrinkling occurs simultane-
ously in both equally compressed facings, and the wrinkling
waves are symmetric or antisymmetric about the middle plane of
the core. The entire core is affected and accounting for symmetry
about the middle plane, and constants of integration are deter-
mined from the condition of continuity of the displacements at the
facing–core interface and the conditions of continuity of

displacements and normal and transverse shear strains at the inter-
face between the adjacent core layers. In the case of symmetric
wrinkling, the additional symmetry condition is that the displace-
ment at the middle plane of the sandwich is equal to zero. Accord-
ingly, in the case of symmetric wrinkling

Z1 z1 ¼ 0ð Þ ¼ 1

Z1 z1 ¼ t1ð Þ ¼ Z2 z2 ¼ 0ð Þ
Z1
0 z1 ¼ t1ð Þ ¼ Z2

0 z2 ¼ 0ð Þ
:::::::::::::::::::::::::::::::::::::::::

Zi zi ¼ tið Þ ¼ Ziþ1 ziþ1 ¼ 0ð Þ
Zi
0 zi ¼ tið Þ ¼ Ziþ1

0 ziþ1 ¼ 0ð Þ
:::::::::::::::::::::::::::::::::::::::::

ZN zN ¼
tN

2

� �
¼ 0

(14)

where ti is the thickness of the i-th layer of the core,
ð…Þ0 ¼ ðdð…Þ=dzÞ; 1 < i < N, and N is the number of layers
from one of the facings to the middle plane, including the N-th
layer that is bisected by this plane. It is observed that the number
of unknown constants of integration C

ðiÞ
1 ; C

ðiÞ
2 equals the number

of equations (14).
If wrinkling is antisymmetric, the continuity conditions (14) are

enforced throughout the entire depth of the core, but the last
Eq. (14) is replaced with

Z2Nðz2N ¼ t2NÞ ¼ 1 (15a)

where 2N is the total number of core layers between two facings.
In the other case considered here only one facing wrinkles. This

occurs if the opposite facing is stiffer or it is not subject to com-
pression. In such case, Eq. (14) remains valid, except for the last
equation that is replaced with

Z2Nðz2N ¼ t2NÞ ¼ 0 (15b)

In all cases the constants of integration determined from the sys-
tems of algebraic equations (14) (and Eq. (15a) or Eq. (15b), if
applicable) are used to calculate ki from Eq. (11). Subsequently,
the stresses in the layers of the core are obtained using Eqs. (5),
(6), (8), and (10). These stresses are employed in the extended
Hoff formulation discussed below. Contrary to the classical Hoff
method, the solution presented in this section does not rely on the
assumption that the depth of the core affected by the wrinkle is
limited. Accordingly, the only independent variable affecting the
wrinkling stress is the length of the wrinkle l.

It should be noted that the choice of an extension of Hoff’s
method in the subsequent analysis is justified by recent experi-
mental findings [1], where this method was found in better agree-
ment with test data on panels with a homogeneous core than
several alternative methods.

The total potential energy per unit width of the panel is com-
posed of the strain energies of the facing and core, and the energy
of the applied load that is the opposite of work of this force. The
expressions for the energy of the facing and the energy of the
applied compressive load reproduced from the Hoff solution are
unaffected by the structure of the core. The former energy is

Uf ¼
Df

2

ðl

0

w;xxð Þ2dx ¼ p4Df

4l3
W2 (16)

where Df is the bending stiffness of the facing.
The work of the wrinkling stresses rwr applied to the facing is

Vwr ¼
rwrtf

2

ðl

0

w;xð Þ2dx ¼ p2tf W
2

4l
rwr (17)
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where tf is the thickness of the facing.

The energy of the core includes the contributions of all layers.
For example, in the first case considered above, i.e., if both fac-
ings wrinkle symmetrically

Uc ¼
1

2

ðl

0

XN

i¼1

ðzi¼ti

zi¼0

r ið Þ
z

� �2

Q11
ið Þ dxdzþ 1

2

ðl

0

XN

i¼1

ðzi¼ti

zi¼0

s ið Þ
xz

� �2

G ið Þ dxdz

(18)

The axial stress in the core does not directly contribute to the
strain energy since rðiÞx ¼ 0, according to the assumption adopted
above.

The substitution of the expressions for the layerwise stresses
and integration of Eq. (18) over the axial coordinate yield

Uc¼
l

4
W2
XN

i¼1

Q ið Þ
11

ðzi¼ti

zi¼0

Zi zið Þ;z
� �2dzþ p

l

� �2

G ið Þ
ðzi¼ti

zi¼0

Zi zið Þ
� �2dz

( )

(19)

The wrinkling stress can now be determined as a function of the
only independent variable, i.e., the length of the wrinkle

rwr ¼ min
1

p2tf

p4Df

l2
þ l2F

� �( )

F ¼
XN

i¼1

Q ið Þ
11

ðzi¼ti

zi¼0

Zi zið Þ;z
� �2dzþ p

l

� �2

G ið Þ
ðzi¼ti

zi¼0

Zi zið Þ
� �2dz

( )

¼ f1 þ
p
l

� �2

f2

f1 ¼
XN

i¼1

Q ið Þ
11

ðzi¼ti

zi¼0

Zi zið Þ;z
� �2dz; f2 ¼

XN

i¼1

G ið Þ
ðzi¼ti

zi¼0

Zi zið Þ
� �2dz

(20)

The minimization is conducted resulting in both the length of the
wrinkle and the wrinkling stress

lwr ¼ p

ffiffiffiffiffiffi
Df

f1

4

s
; rwr ¼

1

tf
2
ffiffiffiffiffiffiffiffiffiffi
Df f 1

p
þ f 2

� �
(21)

The case where only one facing wrinkles is analyzed similarly.
The number of wrinkling waves at the critical load can be deter-

mined using the length of the wrinkle given by Eq. (21). In theory,
the wrinkles appear over the entire surface of the panel, so given
its length, the number of identical wrinkles is available. In reality,
boundary conditions may affect the wrinkles adjacent to the edge
(see, for example, local three-dimensional effects in the vicinity to
the edge subject to controlled force demonstrated in Ref. [3]). Fur-
thermore, even small local defects may affect wrinkling, triggering
only one or several waves, prior to wrinkling of the entire panel.

Analysis of Wrinkling of a Sandwich Panel or Beam With a
Continuously Functionally Graded Core Using the Hoff
Method. The Hoff method (sometimes called the Hoff–Mautner
method) utilizes the assumption that displacements in the core in
the direction perpendicular to the facing decrease linearly with the
distance from the facing–core interface [5]

w ¼ W
h� z

h
sin

px

l
(22)

where h is the depth of the core affected by wrinkling.
We apply this method to the case where the core of the sand-

wich structure is continuously graded through the thickness. Then,

the equations of equilibrium have variable coefficients and cannot
exactly be integrated.

The difference between the Hoff method applied to a sandwich
structure with a homogeneous core as compared to the counterpart
with a functionally graded core appears in the expression for the
strain energy of the core. While the strain energy of the facing and
the work of the applied load are given by Eqs. (16) and (17), the
strain energy of the core in a sandwich beam is

Uc ¼
1

2

ðl

0

ðh

0

r2
z

E zð Þ
dxdzþ 1

2

ðl

0

ðh

0

s2
xz

G zð Þ
dxdz (23)

where the stresses are given by

rz ¼ EðzÞw;z; sxz ¼ GðzÞw;x (24)

In the case of a sandwich panel, the same approach is used replac-
ing the modulus of elasticity EðzÞ with reduced stiffness Q11ðzÞ.

Substituting the expressions for graded moduli of elasticity and
shear as well as the wrinkling mode shape given by Eq. (22) in the
integrals in Eq. (23), the strain energy of the core becomes

Uc ¼
p
l

� �2

F1 hð Þ þ F2 hð Þ
" #

l

4
W2 (25)

where

F1 hð Þ ¼
ðh

0

G zð Þ
h� z

h

� �2

dz; F2 hð Þ ¼ 1

h2

ðh

0

E zð Þdz (26)

Combining Eqs. (16), (17), and (25) to obtain the total potential
energy, the wrinkling stress is explicitly derived as

rwr ¼
1

p2tf

p4Ef

l2
þ l2

p
l

� �2

F1 hð Þ þ F2 hð Þ
" #( )

(27)

where Ef is a bending modulus of the facing replacing the bending
stiffness Df in Eq. (16).

The minimization of the wrinkling stress with respect to the
wrinkle depth and length depends on the functional grading of the
core, i.e., EðzÞ and GðzÞ. Once these functions are specified and
the integrals in Eq. (26) are evaluated, the solution is straightfor-
ward. The solution for the wrinkling stress of a sandwich structure
with a homogeneous core considered as a particular case of the
above solution coincides with the classical Hoff formula.

Wrinkling Stress in a Sandwich Beam Exposed to an
Elevated Temperature. The effect of an elevated temperature on
structures involves both explicit “thermal” terms in the expres-
sions for the strains, stresses, stress resultants, and stress couples
as well as the effect of temperature on the material properties. In
polymeric composites, the latter effect if further complicated by a
decomposition of the material, viscous softening, oxidation, etc.
(e.g., see Ref. [28]). A comprehensive thermomechanical analysis
requires the solution of coupled problems of heat transfer, decom-
position and property degradation, and thermomechanical static or
dynamic formulation. In the case involving functionally graded
materials, the solution becomes even more complicated due to a
different effect of temperature at various locations in the graded
medium. All material constants, such as specific heat capacity,
thermal conductivity, and thermal expansion coefficients and the
stiffness tensor, vary both with the location as well as with the
local temperature.

The effect of fire is an example of a rigorous thermomechanical
analysis in sandwich structures [29–33]. In the case of polymeric
composite facings and a polymeric or balsa core, the properties of
the material as well as the stiffness of the structure exposed to fire
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continuously change with time as the polymer or balsa is con-
verted into char. The charred regions gradually expand through
the thickness of the structure until it collapses.

In the wrinkling problem considered here, we assume a quasi-
static uniform or nonuniform through the thickness temperature
distribution. The analysis is limited to the case where the elevated
temperature is not sufficient to trigger the char conversion process
(e.g., for a vinylester resin the char onset temperature is between
250 �C and 300 �C [34]). The heat conduction problem is assumed
solved. Accordingly, given the local temperature, the property
degradation can be determined by one of available curve–fitting
relationships [28].

Polynomial Relationship

P Tð Þ ¼ 1�
X
j¼1

kj
T � T0

Tg � T0

� �j
" #

P0 (28)

where P is the property in question, T is a current temperature, Tg

is the glass transition temperature, T0 and P0 are a reference tem-
perature and the corresponding property at this temperature, kj are
empirical coefficients and is a natural number.

An alternative model is represented by the so-called “tan h
equation”

P Tð Þ ¼ P0 þ PR

2
� P0 � PR

2
tan h k T � Tgð Þ

� �	 

(29)

where PR is a fully relaxed (high temperature) property of the
composite. The property–temperature relationships accounting for
additional phenomena taking place under an elevated temperature
are discussed elsewhere (e.g., see Ref. [30]).

In fiber-reinforced facings relationships (28) and (29) may be
available for the composite material or for the individual phases
(e.g., a polymer matrix may be affected by an elevated tempera-
ture that has a negligible effect on the fiber material). In the latter
case, Eqs. (28) or (29) should be employed to account for the deg-
radation of the corresponding constituent phases in an appropriate
micromechanical formulation yielding the property of the com-
posite material of the facing.

In the foam core, the properties of the solid foam material
should be adjusted at an elevated temperature. For example, using
the property degradation Eq. (28), the modulus of elasticity of a
solid foam material in Eqs. (1) and (2) is

E Tð Þ ¼ 1�
X
j¼1

kj
T � T0

Tg � T0

� �j
" #

E T0ð Þ (30)

An alternative simple relationship approximately estimating the
stiffness of the foam as a linear function of temperature is [23]

E Tð Þ ¼ 1� am
T

Tg

� �
E TK¼0ð Þ (31)

where EðTK¼0Þ is the modulus of elasticity at T ¼ 0�K, and am is
a constant that varies in the range am ¼ 0:560:2. For rigid polyur-
ethane foams, the appropriate constant value is am ¼ 0:65.

Experimental data for such foam materials as polyurethanes
(e.g., see Ref. [35]) generally supports a nearly linear relationship
between the stiffness and temperature above 0 �C, with some non-
linearity that could be accommodated using Eq. (30). Data for
rigid polyurethane foams presented in Ref. [23] demonstrated that
the stiffness of the foam changes linearly with temperature in
accordance with Eq. (31), in the range of relative foam densities
varying from 0.06 to 0.35 and for temperatures increasing up to
200 �C.

In the case of a sandwich beam affected by a uniform tempera-
ture, the thermally induced property degradation is monitored by

the relationships presented above. The subsequent analysis is con-
ducted generalizing the previous solutions to account for explicit
thermal terms. For example, the strains for the i-th isotropic layer
are obtained by a generalization of Eq. (6)

ex � eðiÞx ¼ uðiÞ;x � aðiÞT

ez � eðiÞz ¼ wðiÞ;z � aðiÞT

cxz � cðiÞxz ¼ uðiÞ;z þ wðiÞ;x

(32)

where aðiÞ ¼ aðiÞðTÞ is the coefficient of thermal expansion.
Following the Hoff method, the strain–displacement relations can
be simplified in the subsequent analysis by neglecting the axial
displacement.

Using the shape of the wrinkle (3), the solution of the equations
of equilibrium (4) remains without change, i.e., it is given by
Eq. (8), but the continuity conditions (14) and (15) are modified.
For example, for a symmetric sandwich beam experiencing sym-
metric wrinkling, Eqs. (14) are replaced with

Z1 z1 ¼ 0ð Þ ¼ 1

Z1 z1 ¼ t1ð Þ ¼ Z2 z2 ¼ 0ð Þ
Z1
0 z1 ¼ t1ð Þ � a 1ð ÞT ¼ Z2

0 z2 ¼ 0ð Þ � a 2ð ÞT

:::::::::::::::::::::::::::::::::::::::::

Zi zi ¼ tið Þ ¼ Ziþ1 ziþ1 ¼ 0ð Þ
Zi
0 zi ¼ tið Þ � a ið ÞT ¼ Ziþ1

0 ziþ1 ¼ 0ð Þ � a iþ1ð ÞT

:::::::::::::::::::::::::::::::::::::::::

ZN zN ¼
tN

2

� �
¼ 0

(33)

In the case of a uniform temperature, Eq. (33) guarantee the conti-
nuity of both the displacements as well as the axial ðezÞ and trans-
verse shear strains ðcxzÞ at the interfaces between the adjacent
core layers.

It is noted that even if the core is homogeneous, it becomes
effectively graded when the structure is exposed to a nonuniform
through the thickness temperature. This grading is due to the
effect of such temperature on the core properties. Contrary to the
intentional grading of the core that benefits wrinkling stability, a
temperature-induced grading is usually undesirable. For example,
if the structure is subject to a heat flux (fire) at one surface, tem-
perature in the core adjacent to the exposed surface is higher, and
the stiffness is lower than in a more remote from this surface sec-
tion of the core.

Numerical Examples

The numerical analysis was undertaken for three different fac-
ings, i.e., glass/epoxy, E-glass/vinyl ester, and graphite epoxy AS
3501 cross-ply facings. The properties of these materials are [36]

Glass=epoxy : E1 ¼ 38:6 GPa; E2 ¼ 8:27 GPa; G12 ¼ 4:14 GPa;

�12 ¼ 0:26; Vf ¼ 0:45

E� glass=vinylester : E1 ¼ 24:4 GPa; E2 ¼ 6:87 GPa;

G12 ¼ 2:89 GPa; �12 ¼ 0:32; Vf ¼ 0:30

AS3501graphite=epoxy : E1 ¼ 138:0 GPa; E2 ¼ 9:0 GPa;

G12 ¼ 6:9 GPa; �12 ¼ 0:30; Vf ¼ 0:65

where Vf is the volume fraction of fibers.
The thickness of the facing was equal to 2 mm, each layer being

0.25 mm thick. In panels with such thin facings, wrinkling may
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occur at a lower stress than the loss of strength. The alternative
failure mode, i.e., global buckling, that is not considered here
depends on the thickness and the span of the sandwich beam.
The core material was polyurethane foam with the mass
density ratio varying from 10% to 35% of the solid polyurethane.
The properties of solid polyurethane are q ¼ 1200 kg=m3; E ¼
1:6 GPa [23].

The core adjacent to the facing was subdivided into three sec-
tions (Fig. 1). The mass densities of foam in the outer sections 1
and 2 were larger than that in the inner section 3, q1 � q2 � q3.
The wrinkling stress was normalized with respect to its counter-
part in the structure with a homogeneous core of the mass density
equal to 10% of that of the solid polyurethane, q3 ¼ 0:10q. The
core was assumed thick, so that the opposite facing did not affect
the analysis.

The effect of the thickness of functionally graded sections of
the core on the wrinkling stress is demonstrated in Fig. 2. Even
very thin denser layers supporting the facing may result in a large
increase in the wrinkling stress (over 50%, even if layers 1 and 2
are only 2 mm thick). This illustrates the potential of functional
grading that can be achieved with a negligible increase in the
weight of the structure.

The effect of using a thicker intermediate layer (layer 2) is illus-
trated in Fig. 3. The beneficial effect of a higher mass density (and
stiffness) of the intermediate layer is limited. Predictably, a more

pronounced effect on wrinkling stability is achieved by increasing
the thickness of the outermost layer adjacent to the facing (layer
1), as demonstrated in Fig. 4.

The effect of varying the mass density of layer 2 is further dem-
onstrated in Figs. 5 and 6 for two different thickness values
t1 ¼ t2. A useful observation from these figures is that even using
a single denser layer adjacent to the facing (layer 2 eliminated, so
that ðq2=qÞ � 0:1) can result in a significant increase in the wrin-
kling stress (over 50% improvement with t1 ¼ t2 ¼ tf and over
170% with t1 ¼ t2 ¼ 4tf for graphite epoxy facings and even bet-
ter results for glass/epoxy and E-glass/vinyl ester facings). The
effect of an increase of the mass density of the outermost layer
(layer 1) is depicted in Figs. 7 and 8, where the wrinkling stress
sharply increases as the mass density of the outermost layer
increases from that for layer 2 q1 ¼ q2 ¼ 0:20q to the maximum
value considered in these examples, i.e., q1 ¼ 0:35q.

The envelopes of the required mass densities of layers 1 and 2
necessary to increase the wrinkling stress by factor of 2.0 as com-
pared to the wrinkling stress for a beam with a homogeneous
foam core of the mass density equal to 0:10q; are shown in Fig. 9.
As is reflected in the previous discussion and evidenced from the
figure, a desirable wrinkling stability improvement can be
achieved with a denser outermost layer, while increasing the mass
density of the intermediate layer is less efficient.

Fig. 2 Effect of variations in the thickness of a functionally
graded core on the wrinkling stress. The mass density of the
core layers are q1 5 0:35q; q2 5 0:15q; and q3 5 0:10q; the thick-
nesses of layers 1 and 2 are equal to each other.

Fig. 3 Effect of variations in the thickness of intermediate
layer 2 in a functionally graded core on the wrinkling stress.
The thickness of outermost layer 1 is t1 5 tf . The mass density
of the core layers are q1 5 0:35q; q2 5 0:15q; and q3 5 0:10q. The
thickness of layer 2 varies from tf ð2 mmÞ to 4tf ð8 mmÞ.

Fig. 4 Effect of variations in the thickness of outermost layer 1
in a functionally graded core on the wrinkling stress. The thick-
ness of intermediate layer 2 is t2 5 tf . The mass density of the
core layers are q1 5 0:35q; q2 5 0:15q; and q3 5 0:10q. The thick-
ness of layer 1 varies from tf ð2 mmÞ to 4tf ð8 mmÞ.

Fig. 5 Effect of variations in the mass density of intermediate
layer 2 in a functionally graded core on the wrinkling stress.
The mass density of the core layers are q1 5 0:35q;
q3 £ q2 £ q1; and q3 5 0:10q; the thicknesses of layers 1 and 2 are
equal to t1 5 t2 5 tf .
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The effect of an increase of the uniform temperature from 0 �C
to 100 �C on the wrinkling stress is demonstrated on the example
of a sandwich beam with quasi-isotropic E-glass vinyl ester fac-
ings and a polyurethane foam core. The core was constructed of
three layers, the outermost layer with the mass density
ðqc=qÞ ¼ 0:35, the intermediate layer ðqc=qÞ ¼ 0:19, and the
inner layer ðqc=qÞ ¼ 0:13. The thicknesses of the facings and two
outer layers were equal to tf ¼ t1 ¼ t2 ¼ 2 mm. The half-
thickness of the inner layer (the distance from the interface with
layer 2 and the middle plane) was t3 ¼ 6 mm. The stiffness of the
solid polyurethane foam material adopted in this example was
reported in Refs. [23,37]. The experimentally measured moduli of
elasticity of the foam at the reference temperature 0 �C were equal
to

Ec¼0:45GPaððqc=qÞ¼0:35Þ; Ec¼0:15GPaððqc=qÞ¼0:19Þ ; and

Ec¼0:08GPaððqc=qÞ¼0:13Þ

At 100 �C, the corresponding stiffness values were

Ec¼ 0:25GPaððqc=qÞ¼ 0:35Þ; Ec¼ 0:10GPaððqc=qÞ¼ 0:19Þ and

Ec¼ 0:05GPaððqc=qÞ¼ 0:13Þ

The values reported in Refs. [23,37] were found in a good agree-
ment with the predicted stiffness according to Eq. (31). The shear
moduli of the core layers were estimated using the Poisson ratio
equal to 0.375 that was unaffected by mass density or
temperature.

The stiffness of quasi-isotropic facings was adopted from Ref.
[38] being equal to 20.5 GPa at 0 �C and 17.9 GPa at 100 �C.
These values are somewhat higher than those reported for cross-
ply E-glass vinyl ester laminates in Ref. [39] but the general trend
was unchanged. The stiffness and strength of E-glass vinyl ester
abruptly decrease at temperatures slightly higher than 100 �C, i.e.,
this temperature is close to the maximum service temperature for
this material.

The wrinkling stress at 100 �C was equal to only 63% of the
counterpart at 0 �C (0.43 GPa and 0.68 GPa, respectively). How-
ever, even at this elevated temperature, the wrinkling stress of the
sandwich beam with a functionally graded core was higher than
that of the homogeneous beam with ðqc=qÞ ¼ 0:13 by a factor of
2 demonstrating that the advantage of a functionally graded core
is preserved at elevated temperatures.

Fig. 6 Effect of variations in the mass density of intermediate
layer 2 in a functionally graded core on the wrinkling stress.
The mass density of the core layers are q1 5 0:35q;
q3 £ q2 £ q1; and q3 5 0:10q; the thicknesses of layers 1 and 2 are
equal to t1 5 t2 5 4tf .

Fig. 7 Effect of variations in the mass density of outermost
layer 1 in a functionally graded core on the wrinkling stress.
The mass density of the core layers are q2 £ q1 £ 0:35q;
q2 5 0:20q; and q3 5 0:10q; the thicknesses of layers 1 and 2 are
equal to t1 5 t2 5 tf .

Fig. 8 Effect of variations in the mass density of outermost
layer 1 in a functionally graded core on the wrinkling stress.
The mass density of the core layers are q2 £ q1 £ 0:35q;
q2 5 0:20q; and q3 5 0:10q; the thicknesses of layers 1 and 2 are
equal to t1 5 t2 5 4tf .

Fig. 9 Failure envelopes for mass densities of layers 1 and 2
necessary to increase the wrinkling stress by a factor of 2.0
compared to a homogeneous core of mass density
q3 5 0:1q 5 120 kg=m3. The thicknesses of layers 1 and 2 are
equal to t1 5 t2 5 4tf .
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Conclusions

This paper presents the analysis of wrinkling in sandwich struc-
tures with functionally graded cores. Two grading models are con-
sidered, i.e., a continuously varying stiffness of the core and the
core consisting of several layers, each layer having a different
stiffness. For the latter case, the benefits of using a graded core in
preventing wrinkling instability have been demonstrated. It is
shown that a desirable increase of the wrinkling stress can be
achieved using thin layers of a stiffer core adjacent to the facing.
Increasing the thickness of the stiffer section of the core adjacent
to the facing results in a large increase in the wrinkling stress. A
similar outcome is achieved increasing the stiffness of the core
adjacent to the facing.

In the presence of an elevated temperature, the degradation of
both typical core materials as well as polymeric composite facings
results in a smaller wrinkling stress, even if the transformation
into char does not occur. However, if the temperature is uniform
through the thickness, the advantages of using a functionally
graded core in preventing wrinkling are preserved.

It should be noted that while the wrinkling stress can be
increased using a functionally graded core, the effect of such mod-
ification on the overall buckling of the structure remains minimal
since the stiffness of the core remains much lower than that of the
facings. An increase of the wrinkling stress is beneficial only if
wrinkling is the mode of failure of the sandwich structure. For
example, the wrinkling stress should not be increased beyond the
value corresponding to failure in the layers of the facing. Wrin-
kling may become the dominant mode of failure if the facings are
thin, and the core is too compliant to provide sufficient support.
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