_____ February 22, 2019 Total Score:_____/120___

Constants: electron mass $m_e = 9.11 \times 10^{-31} \text{ kg}$ proton mass $m_p = 1.67 \times 10^{-27} \text{ kg}$

$$e = 1.602 \ x \ 10^{\text{-}19} \ C \qquad \qquad \epsilon_0 = 8.85 \ x \ 10^{\text{-}12} \ C^2 / N \bullet m^2 \qquad k = 9.0 \ x \ 10^9 \ N \bullet m^2 / C^2$$

$$k = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$$

$$F = k \frac{|q_1 q_2|}{r^2}$$

$$E = k \frac{|q|}{r^2}$$

$$\vec{F} = q\vec{E}$$

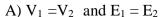
$$F=krac{|q_1q_2|}{r^2}$$
 $E=krac{|q_1|}{r^2}$ $ec{F}=qec{E}$ $U=krac{q_1q_2}{r}$ $V=krac{q}{r}$ $U=qV$

$$\frac{q}{r}$$
 $U = q^{r}$

$$C = \frac{Q}{AV}$$

$$C = \kappa \varepsilon_0 \frac{A}{d}$$

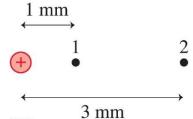
$$\Delta V = Ed$$


$$C = \frac{Q}{\Delta V} \qquad \qquad C = \kappa \varepsilon_0 \frac{A}{d} \qquad \Delta V = Ed \qquad \qquad U = \frac{1}{2} Q \Delta V = \frac{1}{2} C (\Delta V)^2 = \frac{1}{2} \frac{Q^2}{C}$$

$$K = \frac{1}{2}mv^2$$

$$K = \frac{1}{2}mv^2$$
 $\Delta K = -q\Delta V$ parallel: $C_{eq} = \sum_i C_i$ series: $\frac{1}{C_{eq}} = \sum_i \frac{1}{C_i}$

series:
$$\frac{1}{c_{eq}} = \sum_{i} \frac{1}{c_i}$$


____1.(5) The figure shows a point. Which of the following is true about the of the electric potentials V_1 and V_2 and the electric field strengths E_1 and E_2 at the two points, respectively?

B)
$$V_1 = \frac{1}{3}V_2$$
 and $E_1 = \frac{1}{3}E_2$

C)
$$V_2 = \frac{1}{3}V_1$$
 and $E_2 = \frac{1}{3}E$

C)
$$V_2 = \frac{1}{3}V_1$$
 and $E_2 = \frac{1}{3}E_1$ D) $V_2 = \frac{1}{3}V_1$ and $E_2 = \frac{1}{9}E_1$

_____2. (5) Object A has a charge of +2 C and object B has a charge of +4 C. Which is true?

A)
$$\vec{F}_{B \ on \ A} = 2\vec{F}_{A \ on \ B}$$
 B) $\vec{F}_{B \ on \ A} = -\vec{F}_{A \ on \ B}$

$$B) \vec{F}_{B \ on \ A} = -\vec{F}_{A \ on \ B}$$

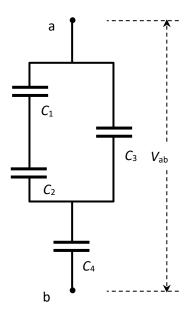
C)
$$\vec{F}_{B \text{ on } A} = -2\vec{F}_{A \text{ on } B}$$
 D) $\vec{F}_{B \text{ on } A} = \frac{1}{2}\vec{F}_{A \text{ on } B}$

D)
$$\vec{F}_{B \ on \ A} = \frac{1}{2} \vec{F}_{A \ on \ B}$$

3. (5) Which of the following is **FALSE**?

- A) Electric field lines are perpendicular to equipotential surfaces.
- B) The electric field points towards higher potential.
- C) The surface of a conductor in electrostatic equilibrium is an equipotential surface.
- C) The field inside a conductor in electrostatic equilibrium is zero.

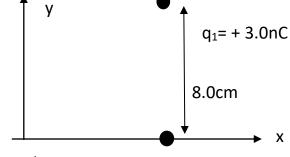
4.(5) An electric dipole is placed in a uniform electric field. Which is true?


- A) The net force on the dipole increases if the electric field strength increases.
- B) The net torque on the dipole is always zero.
- C) The dipole wants to align so that the dipole moment is perpendicular to the electric field.
- D) A dipole in a uniform electric field experiences zero net force.

___/20 points for this page

2mm apart with air betwe a) (5) Calculate the capaci	=	potential differen	ce between the	plates is 600 V.
b)(5) Calculate the amour	t of charge stored	on each plate.		
c) (5) Calculate the electri	c field between th	e plates.		
d) (5) If the voltage differ unchanged? Circle the cor	·	plates is doubled,	which of these	quantities remains
Charge Cap	pacitance	Electric field		
e) (15) An electron is rele It strikes the positive plate left the negative plate?	_	_		= =
f) (5) During this process,	what is the electron	on's change in kir	netic energy in	electron volt?
				/40 points for this page

5. (40) A parallel plate capacitor consists of two circular plates of radius 10cm that are spaced


6. (20) For the capacitor circuit in the figure, $C_1=6 \text{ nF, } C_2=\ 12 \text{ nF, } C_3=4 \text{ nF, and } C_4=8 \text{ nF.}$

b) (5) If the applied voltage $V_{ab} = 20V$, find the total charge on the system.

____/20 points for this page

7) (40) Two charges, q_1 =+3.0nC and q_2 =-3.0nC, are located as shown in the figure. Charge q_2 is located on the *x*-axis at x= 6.0cm. Charge q_1 is at x= 6.0cm, y=8.0cm.

6.0cm

 $q_2 = -3.0nC$

- a)(5) At the origin, draw the electric field vectors created by each of the charges.
- b)(10) Calculate the magnitudes of the electric fields created by each of the charges at the origin.

c)(10) Calculate the x- and y- components of the net electric field at the origin.

d)(5) Calculate the magnitude of the net electric field at the origin.

e)(10) Calculate the electric **potential** at the origin.

_____/40 points for this page