Physics 2145 Spring 2022 Test 1 (4 pages)

Name:	Febru	ary 19, 2022	То	tal Score:	/120
Constants: electron m	ass $m_e = 9.11$	l x 10 ⁻³¹ kg	pro	oton mass m	$_{\rm p} = 1.67 \ {\rm x} \ 10^{-27} \ {\rm kg}$
$e = 1.602 \text{ x } 10^{-19} \text{ C}$	$\varepsilon_0 = 8.$	85 x 10 ⁻¹² C ² /	$N \cdot m^2$ k =	= 9.0 x 10 ⁹ N	• m^2/C^2
$F = k \frac{ q_1 q_2 }{r^2}$	$E = k \frac{ q }{r^2}$	$\vec{F} = q\vec{E}$	$U = k \frac{q_1 q_2}{r}$	$\frac{2}{2}$ $V = k \frac{2}{2}$	$\frac{d}{dr}$ $U = qV$
$C = \frac{Q}{\Delta V}$	$C = \kappa \varepsilon_0 \frac{A}{d}$	$\Delta V = Ed$	$U = \frac{1}{2}Q_2$	$\Delta V = \frac{1}{2}C(\Delta)$	$V)^2 = \frac{1}{2} \frac{Q^2}{c}$
$K = \frac{1}{2}mv^2$	$\Delta K = -q\Delta V$	parallel: <i>C_{eq}</i>	$=\sum_i C_i$	series:	$\frac{1}{C_{eq}} = \sum_i \frac{1}{C_i}$
1.(5) An electron plate B. A uniform ele without deflecting it. V A) up B) dow 2. (5) As the elec potential energy	travels throug ectric field betw What is the dir n tron in questic	th a small hole ween the plate ection of the o C) right on 1 goes from and it	e in plate A a es slows dow electric field? D) n plate A to p moves towar	nd then towa n the electron left • late B, its ds	$A \qquad B$
electric	potential.		moves towar	us	
A) increases, higher		B) decreases	s, higher		
C) increases, lower		D) decreases	s, lower		
3. (5) An electric directed to the right, a A) The dipole moves B) The dipole moves t C) The dipole rotates D) The dipole rotates E) The dipole remains	dipole is place s shown in the to the right. to the left. clockwise. counterclockw	ed in a unifor figure. Whic vise.	m electric fie h is true?	ld that is	
4.(5) Which of th A) Equipotentials are B) The surface of a co C) The electric field v D) The electric field is are spaced further apa	e following is parallel to the onductor is an e ector points to s smaller wher rt	true? electric field equipotential wards higher e the equipote	vector. surface. potential. entials are clo	ose together a	und larger where they

____/20 points for this page

5. (20) A parallel plate capacitor consists of two square plates of side length 6.0cm that are spaced 2.0mm apart with air between the plates. Each plate stores a charge of 2.0 nC. a) (5) Calculate the capacitance.

b)(5) Calculate the potential difference between the plates.

c) (5) Calculate the electric field between the plates.

d) (5) The capacitor is **disconnected** from the battery, and the plates are moved further apart. Which of these quantities **increases**? Circle the correct answer.

charge	capacitance	potential difference	electric field
--------	-------------	----------------------	----------------

6. (20) The potential difference between two plates of a parallel plate capacitor equals 3,000 V. An electron is launched from the negative plate with a speed of 1.5×10^7 m/s.

a) Derive a **symbolic answer** in terms of system parameters and calculate a **numerical value** for the speed with which the electron strikes the positive plate.

b) (5) During this process, what is the electron's change in kinetic energy in electron volt?

_____/40 points for this page

b) (5) If the applied voltage between points A and B is $V_{ab} = 20V$, find the total charge on the system.

____/20 points for this page

8. (40) Two charges, $q_1 = -2.0$ nC and $q_2 = +3.0$ nC, are located as shown in the figure. Charge q_1 is at the origin. Charge q_2 is located on the *y*-axis at *y*= 12.0 cm. Point P is on the *x*-axis at *x*= 16.0 cm.

a)(5) At point P, draw the electric field vectors created by each of the charges.

b)(10) Calculate the magnitudes of the electric fields created by each of the charges at point P.

c)(10) Calculate the *x*- and *y*- components of the net electric field at point P.

d)(5) Calculate the magnitude of the net electric field at point P.

e)(10) Calculate the electric **potential** at point P.

____/40 points for this page