Physics 481: Condensed Matter Physics - Homework 1

due date: Jan 21, 2011

Problem 1: Honeycomb lattice (10 points, Marder - Problem 1.1)
The honeycomb lattice can be constructed by starting from the hexagonal Bravais lattice with primitive vectors $\vec{a}_{1}=a(\sqrt{3} / 2,1 / 2)$ and $\vec{a}_{2}=a(\sqrt{3} / 2,-1 / 2)$ where a is the lattice constant. Each lattice point is then decorated with basis particles at relative positions $\vec{v}_{1}=a(\sqrt{3} / 6,0)$ and $\vec{v}_{2}=a(-\sqrt{3} / 6,0)$
a) Verify that this construction leads to a regular honeycomb lattice (the distances between all neighboring points are identical, and all internal angles are 120°).
b) Sketch the neighborhoods of two particles in the honeycomb lattice which are not equivalent, and describe the rotation that would be needed to make them identical.

Problem 2: General reflection matrix in two dimensions (15 points)
Consider the reflection of a lattice point $\vec{R}=(x, y)$ about an axis through the origin that forms an angle ϕ with the x -axis. Show that the matrix form of this operation is

$$
\left(\begin{array}{cc}
\cos (2 \phi) & \sin (2 \phi) \\
\sin (2 \phi) & -\cos (2 \phi)
\end{array}\right)
$$

Hint: An efficient way of finding the matrix consists in rotating the lattice such that the reflection axis coincides with the x -axis, performing the reflection, and rotating back!

Problem 3: Allowed rotation axes (15 points, Marder - Problem 1.4)
Prove that the only allowed rotation axis in a two-dimensional Bravais lattice are twofold, threefold, fourfold, and sixfold!

To this end, consider the images of the lattice point $(a, 0)$ under rotations around the origin by angles ϕ and $-\phi$. Both must be in the Bravais lattice! From these conditions derive a simple expression that implicitly specifies all possible ϕ.

