Physics 481: Condensed Matter Physics - Homework 4

due date: Friday, Feb 11, 2011
Problem 1: Nematic order parameter (15 points)
Consider a three-dimensional nematic liquid crystal consisting of N rod-like molecules. The nematic order parameter (i.e., a quantity characterizing the degree of nematic order) can be defined as

$$
S=\sum_{j=1}^{N}\left\langle\cos ^{2} \Theta_{j}-\frac{1}{3}\right\rangle
$$

where Θ_{j} is the angle between the axis of molecule j and the director \hat{n}. $\langle\ldots\rangle$ indicates the thermodynamic average.
a) Show that S is indeed a nematic order parameter. To this end, show that it vanishes if the rods point in random directions. Also calculate S for a state with perfect nematic order.
b) In a magnet, an order parameter can be defined as $M=\sum_{j}\left\langle\cos \Theta_{j}\right\rangle$ where Θ_{j} is the angle between the spin j and the magnetization direction \hat{n}. Is this an order parameter for the nematic, too? Explain your answer.
c) Consider hypothetical molecules shaped like a $+\operatorname{sign}$ (symmetric under 90° rotations). Suggest an order parameter characterizing the degree of order in their relative orientations. Hint: Construct the order parameter analogous to S, but take the different symmetry into account!

Problem 2: Nematic-to-isotropic transition (25 points)

A liquid crystalline material can undergo a transition from an isotropic state $(S=0)$ to a nematic state $(S \neq 0)$ upon lowering the temperature. The behavior close to the transition can be understood in terms of the free energy density f as a function of S (this is a so-called Landau free energy):

$$
f=\frac{1}{2} r S^{2}-w S^{3}+u S^{4} .
$$

Here, w and u are positive constants, and r is a measure for the temperature. The physical value of the nematic order parameter S can be found by minimizing f.
a) Sketch the Landau free energy for various values of r (positive and negative) while treating w and u as fixed constants.
b) Find S as a function of r by minimizing the free energy.
c) The nematic phase transition occurs when the nematic phase $(S \neq 0)$ has a lower free energy then the isotropic phase $(S=0)$. Find the value r_{c} of the temperature parameter at which the transition occurs. Find the value S_{c} of the order parameter at the transition.
d) Determine the limits of metastability, i.e., the r-range for which several solutions coexist.

