Physics 481: Condensed Matter Physics - Homework 5

due date: Friday, Feb 18, 2011
Problem 1: Fibonacci chain (8 points)
Determine the ratio between the numbers of A and B elements in Fibonacci chains of generation $2,3,4,5$. Calculate the limiting value in an infinite chain. Use the inflation rule!

Problem 2: Linear ionic crystal (12 points)

Consider a one-dimensional chain of $2 N$ ions of alternating charge $\pm q(N \gg 1)$. In addition to the Coulomb interaction, there is a repulsive potential A / R^{n} between nearest neighbors only. (R is the distance between nearest neighbor ions.)
a) Determine the equilibrium distance R_{0}.
b) Determine the cohesive energy E_{0} for this distance and show that it can be written as

$$
E_{0}=-N 2 \ln 2\left(1-\frac{1}{n}\right) \frac{q^{2}}{R_{0}} .
$$

c) Determine the work necessary to compress the crystal such that $R=R_{0}(1-\delta)$ to leading order in the small parameter $\delta \ll 1$

Problem 3: Polymer stiffness (Marder, problem 5.6, 20 points)
Consider a polymer composed of a sequence of N rigid rods of length a. The polymer is confined to two dimensions, and the rods are connected by springs. If the angle between $\operatorname{rod} l$ and $\operatorname{rod} l+1$ is Θ_{l} then the energy of this joint is $\kappa \Theta_{l}^{2}$. (assume low temperatures such that $\kappa / k_{B} T \gg 1$). Show that long enough polymers behave as a random walks. To this end:
a) Write down the probability of having a particular set of angles $\Theta_{1}, \ldots, \Theta_{N}$ at temperature T (use canonical ensemble, i.e., Boltzmann distribution)
b) Put one end of the polymer at the origin. Find the coordinates $\left(x_{N}, y_{N}\right)$ of the other end as a function of the angles $\Theta_{1}, \ldots, \Theta_{N}$. (Hint: It helps to formulate the problem in the complex plane!)
c) Find the thermal average $\left\langle x_{N}^{2}+y_{N}^{2}\right\rangle$. (Assume a sufficiently long polymer such that $N k_{B} T \gg \kappa$.)
d) The result has the same form as expected for an ideal random walk, but the segment length a has to be replaced by by effective length \tilde{a}. What is \tilde{a} ?

