due date: Thursday, Feb 25, 2011

Problem 1: Model of a nobel gas crystal (20 points)

A simple model of a noble gas crystal consists of a f.c.c. lattice with a Lennard-Jones interaction

$$U(r) = -4\epsilon \left[\left(\frac{\sigma}{r}\right)^6 - \left(\frac{\sigma}{r}\right)^{12} \right]$$

between the nearest neighbors in the lattice only. Here, r is the nearest neighbor distance, and the parameters are $\epsilon = 0.0104$ eV, $\sigma = 3.40$ Å for argon.

- a) How many nearest neighbors does each site have on a f.c.c. lattice? What is the nearest-neighbor distance in terms of the lattice constant *a* of the conventional cubic unit cell?
- b) Find the total cohesive energy \mathcal{E} for a large crystal of N argon atoms (neglecting surface effects) and the lattice constant a of the cubic unit cell. Compare with the experimental values $a \approx 5.3$ Å and $\mathcal{E}/N \approx -0.08$ eV/atom.
- c) The crystal is compressed by isotropic pressure. Calculate the work necessary to reduce the lattice constant from a to $a(1 \delta)$ with $\delta \ll 1$.
- d) Using the thermodynamic relation dW = -pdV, determine how much the lattice constant of the argon crystal changes in 100 atm of pressure (1 atm =10⁵ N/m²).

Problem 2: Phonon dispersion with alternating spring (Marder problem 13.1, 20 points)

Consider a one-dimensional chain of identical atoms. The springs between them alternate in strength between values K_1 and K_2 .

- a) Find the vibrational frequencies as a function of wave number q. Study the low q limit and find the sound velocity.
- b) Discuss the physical meaning of the two branches. Sketch the way the atoms move in both cases!
- c) Discuss the dispersion and the normal modes for $K_1 \gg K_2$.
- d) Discuss the limit $K_1 \approx K_2$ and compare with the homogeneous chain where all springs are identical (see class).