Friday, March 4, 2011

Problem 1: Structure determination (70 points)

Debye-Scherrer X-ray diffraction is used to study a powder specimen of a monoatomic substance that is known to crystallize in a cubic Bravais lattice structure with primitive vectors $\vec{a}_1 = (a, 0, 0)$, $\vec{a}_2 = (0, a, 0)$ and $\vec{a}_3 = (0, 0, a)$. The wavelength of the X-rays is 1.4 Å.

- a) Find the primitive vectors of the reciprocal lattice. (15 points)
- b) Find the four shortest possible lengths of reciprocal vectors. (20 points)
- c) The first diffraction ring is at an angle of $\vartheta = 17.9^{\circ}$ from the incident direction. Determine the lattice constant a. (20 points)
- d) Find the angles of the next three diffraction rings. (15 points)

Problem 2: One-dimensional Morse solid (80 points points)

Consider N identical atoms of mass M whose motion is restricted to the x-axis. Nearest neighbor atoms are coupled by the so-called Morse potential

$$V_M(r) = D \left(1 - e^{-\alpha(r-r_0)}\right)^2 - D$$

where r is the distance between them and D, α , and r_0 are positive constants.

- a) Calculate $V_M(0)$, $V_M(\infty)$ and qualitatively sketch the Morse potential. (10 points)
- b) Find the equilibrium distance between the atoms at zero temperature and the cohesive energy. (10 points)
- c) Determine the harmonic approximation to the total potential energy $V = \sum_{j} V_M(x_{j+1} x_j)$ by expanding to quadratic order in the displacements u_j from the rest positions. (15 points)
- d) Write down the classical equations of motion for the displacements in harmonic approximation. (15 points)
- e) Calculate the dispersion (frequency-wavenumber) relation of the phonons, assuming periodic boundary conditions. (20 points)
- f) Calculate the speed of sound in terms of the potential parameters D, α , r_0 as well as the mass M. (10 points)

Problem 3: Phonons of a square lattice (50 points)

Consider a two-dimensional solid of identical atoms of mass M on a square lattice of lattice constant a. In this problem, we investigate vibrations perpendicular to the lattice plane. The equations of motion for the displacements $u_{j,l}$ read

$$M\ddot{u}_{j,l} = K(u_{j+1,l} - u_{j,l}) + K(u_{j-1,l} - u_{j,l}) + K(u_{j,l+1} - u_{j,l}) + K(u_{j,l-1} - u_{j,l})$$

Here, j and l index the atom position in the x and y directions, respectively.

- a) Determine the dispersion relation (ω as a function of \vec{q}) of the phonons for a wave with a wave vector $\vec{q} = (q_x, q_y)$. (30 points)
- b) Calculate the speed of sound in terms of K and M. Does it depend on the direction of \vec{q} ? (20 points).

BONUS: The chain of problem 2 is stretched by a small external tension force T. Calculate the change in length ΔL . (15 BONUS points)