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In this paper, we study dynamics of the ground state and central vortex states in Bose—
Einstein condensation {BEC) analytically and numerically, We show how to define the
energy of the Thomas—Fermi (TF) approximation, prove that the ground state is a, global
minimizer of the energy functional over the unit sphere and all excited states are saddle
points in linear case, derive a second-order ordinary differential equation (ODE) which
shows that time-evolution of the condensate width is a periodic function with/without
a perturbation by using the variance identity, prove that the angular momentum expec-
tation is conserved in two dimensions (2D) with a radial symmetric trap and 3D with a
cylindrical symmetric trap for any initial data, and study numerically stability of central
vortex states as well as interaction between a few central vortices with winding numbers
%1 by a fourth-order time-splitting sine-pseudospectral (TSSP) method. The merit of
the numerical method is that it is explicit, unconditionally stable, time reversible and
time transverse invariant. Moreover, it conserves the position density, performs spectral
accuracy for spatial derivatives and fourth-order accuracy for time derivative, and pos-
sesses “optimal” spatial/temporal resolution in the semiclassical regime. Finally we find
numerically the critical angular frequency for single vortex cycling from the ground state
under a far-blue detuned Gaussian laser stirrer in strong repuisive interaction regime and
compare our -numerical results with those in the literatures.
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1. Introduction

Since its realization in dilute bosonic atomic gases,2!4 Bose—Einstein condensation
(BEC) of alkali atoms and hydrogen has been produced and studied extensively in
the laboratory,?® and has spurred great excitement in the atomic physics commu-
nity and renewed the interest in studying the collective dynamics of macroscopic
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ensembles of atoms occupying the same one-particle quantum state.®?® Theoret-
ical predictions of the properties of a BEC like the density profile,!? collective
excitations?? and the formation of vortices*®! can now be compared with experi-
mental data.2 Needless to say that this dramatic progress on the experimental front
has stimulated a wave of activity on both theoretical and numerical aspects.

At temperature T much smaller than the critical temperature T.,%2 a BEC is
well described by the macroscopic wave function ¢ = ¥(x,t) whose evolution is
governed by a self-consistent, mean field nonlinear Schrodinger equation (NLSE)
known as the Gross—Pitaevskii equation (GPE)*40

2
ihOp(x,t) = —g—mv%(x, £) + V(x)9(x, 1) + NUg|p(x, )9 (%, t), (1.1)

where m is the atomic mass, h is the Planck constant, N is the number of atoms
in the condensate, V/(x} is an external trapping potential. When a harmonic trap
potential is considered, V(x) = 2 (w22? + wly? + w2®) with wy, wy and w, being
the trap frequencies in z-, y- and z-direction, respectively. Uy = 4mh%as/m describes
the interaction between atoms in the condensate with a, the s-wave scattering

length. It is convenient to normalize the wave function by requiring
I8P o= [ e ) =1 (12

By introducing the dimensionless variables: + — tlwy, with wy, =
min{wg, wy, w; }, X — Xag With ag = 1/52_,,.! P — Y/ ag/ ? we get the dimensionless
GPE!2:6

i00b(x, 1) = —S V) + VIR + B OPGD),  (13)

where 8 = ;%%'f—m = el and V(x) = 1(722? +72y% +22%) with %o = 2=,
Yy = % and v, = fj‘— In the disk-shaped condensation, i.e. wg = wy and w; > wy
(< v = 1,7, = 1 and v, > 1 with wy, = wg), the 3D GPE can be reduced to a 2D
GPE.3%126 Similarly, in a cigar-shaped condensation, i.e. wy > wy and w; > wy
(& v =1, > 1land 7. > 1 with wy, = wz), the 3D GPE can be reduced to
a 1D GPE.33128 Thys here we consider the dimensionless GPE in d dimensions

(d=1,2,3):
i0ap(x,t) = —%Vi’w + V(X + B [¥%, x€RY, (1.4)

$(x,0) = Yo(x), x € R?, with [[o]* := fm o(x)fdx =1, (1.5)

with
'\,o‘ ’Yy72/27rs 7:12::1:2/21 d = 17
Ba=B1 /v 72m,  Valx) =4 (e +vyt) /2, d=2,  (L6)
1, (v22? +v2y® +422%) /2, d=3,
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where v > 0, v, > 0 and v, > 0 are constants. Two important invariants of (1.4)
are the normalization of the wave function

) = [ o ofde= N = [ wetlax=1, 120 )
and the energy

50 = [ 5199000 + Vabtwix 07 + e, o ax
= Ep(vo), t>0. (1.8)

After BEC was achieved and observed in trapped neutral atomic vapors in
1995,%'1 many theoretical and numerical studies have been done to understand
it, e.g. theoretical study of BEC based on mean field theory3®41:20:1331 4p
kinetic model, 13241 developing efficient and stable numerical method to com-
pute ground state31941%16 and dynamics of BEC,23561L18 comparison with
experiment results,” study of quantized vortex statel:6:26.15,35,38,30,41,36,24,37 4
multi-component BEC,*17:28 ete. Currently, there are still many open problems in
the field, e.g. stability of stationary states, dynamics and interaction of quantized
vortex, etc.

The aim of this paper is to study dynamics of the ground state and central vor-
tex states in BEC analytically and numerically. In order to do so, we first prove that
the ground state is a global minimizer of the energy functional over the unit sphere
and all excited states are saddle points in linear GPE. Then we find a second-
order ODE which governs the dynamics of condensate width. This ODE shows
time-evolution of the condensate width is either a periodic function or a pericdic
function with a perturbation. The frequency of the periodic function is exactly
double the trapping frequency in that direction. In fact, the frequency of the time-
evolution of condensate width was obtained in physical literatures2343:186 haged
on either physical intuition or numerical results. Here we derive it in A mathemat-
ically rigorous way by using a second-order ODE. We also prove that the angular
momentum expectation is conserved in 2D with a radial symmetric trap and 3D
with a cylindrical symmetric trap under any initial data. Finally we study numer-
ically the stability of central vortex states and their interaction by a fourth-order
time-splitting sine-pseudospectral {TSSP4) method. This method is improved from
the second-order time-splitting Fourier pseudo-spectral (TSFP2) method used in
Refs. 3 and 6 for BEC in two aspects: (i) the Fourier basis is replaced by sine basis
in spatial discretization due to the homogeneous Dirichlet boundary condition and
thus the computational complexity per discrete transform is slightly smaller; (ii)
the time-splitting scheme is improved from second-order to fourth-order and thus
much larger time step can be chosen if very high accuracy is required. Therefore
compared with previous methods in the literatures for BEC,? the new method can
save computational time significantly. Our numerical results confirm the spectral
order accuracy in space and fourth-order accuracy in time. The results show that
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central vortices with winding number m = +1 are dynamically stable, and respec-
tively, unstable with |m| > 1, which agree with the results reported in the physical
literatures.1®29:3%3742 But due to its high spatial/temporal resolution and other
“zood” properties, our new method works well when 34 3 1, i.e. in strong repulsive
interaction regime, where the previous methods have difficulty in this regime. 1526
Furthermore, we also apply the high spatial/temporal resolution method to study
interaction between a few central vortices with winding numbers +1. Some inter-
esting and complicated interaction patterns are observed from our numerical study.

The paper is organized as follows. In Sec. 2 we present stationary states including
ground state and central vortex states. In Sec. 3 we study variation of stationary
states in linear GPE, dynamics of condensate widths and conservation of angular
momentum expectation mathematically. In Sec. 4 we present fourth/second-order
time-splitting sine-pseudospectral method for GPE without/with external driven
field respectively. In Sec. 5 we study dynamics of condensate widths, stability of
central vortices and interaction of central vortex states numerically. In Sec. 6 some
conclusions are drawn.

2. Stationary States
To find a stationary solution of (1.4), we write
W(x,t) = e HP(x), {2.1)

where y is the chemical potential of the condensate and ¢ is a function independent
of time. Inserting (2.1) into (1.4) gives the following equation for ¢(x)

b 9) = ~L A0 + Valx) 900 + Bal#(x)P000, xRS, (22)
under the normalization condition
I8l = f () Pelx = 1. (2.3)
]Rd

This is a nonlinear eigenvalue problem under a constraint and any eigenvalue p can
be computed from its corresponding eigenfunction ¢ by

w=is(@) = [ [§ 198000 + Vb0 + Balgix

= B9} + [ G060l i (2.4

In fact, the eigenfunctions of (2.2) under the constraint (2.3) are equivalent to the
critical points of the energy functional Eg(¢) over the unit sphere 5 = {2 ]¢ll =1,
Ega(¢) < oc}. Furthermore, as noted in Ref. 4 they are also equivalent to the steady
state solutions of the following continuous normalized gradient flow (CNGF):

Bip = 500~ Valx)o — Ba 191 + n?% 6, xCRL £20, (25)

#(x,0) = ¢o(x), x € R? with |[gol| = 1. (2.6)



Dynamics in Bose—Einstein Condensation 1867

2.1. Ground state

The BEC ground state wave function ¢4(x) is found by minimizing the energy
functional Eg(¢) over the unit sphere S: Find (13, ¢% € S) such that

Bf = Ep(¢3) = min Eo(d),  uh = ia(d}). (27)

In the case of a defocusing condensate, i.e. B4 > 0, the energy functional Eg(¢) is
positive, coercive and weakly lower semicontinuous on §, thus the existence of a
minimum follows from the standard theory. To understand the uniqueness question,
note that Eg(ad¢}) = Ep(¢}) for all @ € C with Ja| = 1. Thus an additional
constraint has to be introduced to show uniqueness. For non-rotating BEC, the
minimization problem (2.7) has a unique real valued non-negative ground state
solution ¢%(x) > 0 for x € R%.34
When 3; = 0, the ground state solution is given explicitly'2

2

L [ . e, ) d=1,
"+ 2
#g = 5 Yz + Yy ¢g(x) = /4 ('Yx'}"y) 1/4 8_7 i: - ' \ d=2,
-+ + , XYooy ut sz
Y2 T Yy T (Yeryye)te = 2, d=3

(2.8)

In fact, this solution can be viewed as an approximation of the ground state for
weakly interacting condensate, i.e. |84] < 1. For a condensate with strong repulsive
interaction, Le. 8¢ 3> 1, 7, = O(1), v, = O(1) and v, = O(1) in (2.8), the ground
state can be approximated by the TF approximation in this regime!?: ]

¢TF J(lu’ ‘/d(x )/ﬁd) ‘/::t(x) < ﬂEFi (2'9)
otherwise,
1 [(3B17/2)%? d=1,
By = { (48272 /)Y d=2, (2.10)
(15837e1yy=/4m)2® d = 3.

As ¢z" is not differentiable at Vy(x) = 13T, as noted in Refs. 12 and 6,
Ep(¢s" ) = oo and ug(¢3T) = oo. This shows that one cannot use (1.8) to define the
energy of the TF approximation (2.9). How to define the energy of the TF approx-
imation is not clear in the literatures. Using (2.4), (2.10) and (2.9), we present a
way to define the energy of the TF approximation (2.9):

B3 Bp(05) = mo(d) ~ [ GO0 o~ B - [ B1g5e o)

d+2
= fm | [Vd(x)l¢EF(x)J”’ + §|¢EF(X)|4]dx =TT, d=123 (211)

From the numerical results in Refs. 4 and 12, when v, = O(1), 7, = O(1) and
vz = O(1}), we can get

— E3" = Eg(¢3) — E3* — 0, asfa— oo.
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Any eigenfunction ¢(x) of (2.2) under constraint (2.3) whose energy Eg(¢) >
Eg (t,b%) is usually called as excited states in physical literatures.

2.2, Central vortexr stales

To find central vortex states in 2D with radial symmetry, i.e. d=2andy, =7 =1
in (1.4), we write

P(x,t) = e #m i (x,y) = g~ imtg (r)e™?, (2.12)

where (r,8) is the polar coordinate, m # 0 is an integer and is called as index
or winding number, iy, is the chemical potential, and ¢m(r} is a real function
independent of time. Inserting (2.12) into (1.4) gives the following equation for

Pm(T)

1df d 1 2
.umd)m('r) = [_glg ("'E;) + 5 (""2 + %) +ﬁ2|¢m|2] ¢m, 0<r <o, (2'13)

¢m(0) =0, lim dm(r) =0, (2.14)
r—0o0
under the normalization condition

o0 9 _ .
or fo lbm(r)? rdr = L. (2.15)

Tn order to find the central vortex state ¢35 (x,y) = qbg‘(r)e“mﬂ with index m, we
find a real non-negative function ¢(r) which minimizes the energy functional

EP(#(r)) = Bp((r)e™)
o 2
= 'J'r‘/‘0 [W”(T)P + (’rz + %—) l¢(r)|2 + '@2|¢(T)‘4j| rdr, (2.16)

over the set So = {2 [ |¢(F)*r dr = 1,6(0) = 0, EZ(¢) < oo}. The exis-
tence and uniqueness of non-negative minimizer for this minimization problem
can be obtained similarly as for the ground state.?® Note that the set S, =
{$(r)e™® | ¢ € So} C S is a subset of the unit sphere, s0 ¢F(r)e™ is a min-
imizer of the energy functional Eg(¢) over the set S C S. When Bz = 0in (1.4),
o(r) = L pimlg—r?/24
;;-rr|mt!

Similarly, in order to find central vortex line states in 3D with eylindrical

symmetry, i.e. d =3 and 7, =y =11in (1.4), we write

P(x,t) = e Bripn(z,y,2) = eTimbg (7, z)e™, (2.17)

where m # 0 is an integer and is called an index, fm is the chemical potential
and ¢m(r, 2) is a real function independent of time. Inserting (2.17) into (1.4) with
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d = 3 gives the following equation for ¢y, (r, z)

2 2
= | r (r32) ~ 5r + 3 (7 B #2254 10l s 219

“wror\"ar) " 2022
#m(0,2) =0, rlingo Pm(r,2) =0, —co <z < 00, {2.19)
lim ¢m(r,z)=0, 0<r < oo, {(2.20)
[2|—e0

under the normalization condition
o0 o0 )
27ff f |pm(r, 2)|*rdrdz = 1. (2.21)
] —0o

In order to find the central vortex line state ¢7(z,y,2) = ¢E‘(r,z)e*m9 with
index m, we find a real non-negative function ¢7F (r, z) which minimizes the energy
functional

EZ(¢(r, 2)) = Ep(d(r, 2)e™?) )
oo poo .
= 77[0 /;oo ['¢r|2 + f¢z|2 -} (7‘2 +’Y§z2 + T’_z) |¢'2 +,61¢f4:|1"d7'dz,

(2.22)

over the set Sy = {¢>|27rf0°°f_°°w [p(r, 2)|2rdrdz = 1,¢(0,2) = 0,—0c < z < oo,
EZF($) < oo}. The existence and uniqueness of non-negative minimizer for this
inimization problem can be obtained similarly as for the ground state.3* Note
that the set Sy = {#(r,2)e"™ | ¢ € Sy} C S is a subset of the unit sphere, so
$F (r, z)¢"™? is a minimizer of the energy functional Eg(¢) over the set S,,. When

=0i - " —(r? 4y, 2%)/2 4
B=0in (14), §:(r,2) = 2 mmrimle= (P42,
3. Dynamics of the Stationary States

In this section, we first prove that the ground state is a global minimizer of the
energy functional (1.8) over the unit sphere and all excited states are saddle points
in linear GPE. Then we find a second-order ODE which governs the dynamics of
condensate widths. Finally we show that the angular momentum expectation is
conserved in 2D and 3D with a symmetric trap under any initial data.

3.1. Variation of stationary states over the unit sphere

For the stationary states of (2.2), we have the following lemma:
Lemma 3.1. Suppose 84 = 0 and Vy(x) > 0 for x € RY, we have

(i) The ground state ¢4 is a global minimizer of Ey(¢) over S.
(ii) Any excited state ¢; is a saddle point of Ey(¢) over S.
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Proof. Let ¢, be an eigenfunction of the eigenvalue problem (2.2) and (2.3). The
corresponding eigenvalue is p.. For any function ¢ such that Ep(¢) < oo and
l¢e + ¢l = 1, note that (2.3), we have

1612 = 116 + del® — 1ell® = j (600 + $02)dx
]Rd
- [ @+ o, (3.)

From (1.8) with ¢ = ¢. + ¢, note that (2.3) and (3.1}, integration by parts, we get
Botte 4 9) = [, [31960+ Vol + Vet + o) ax -
= [ [siwee+ Vgl ix-+ | [31vs+ Vol ax
R R
b [ [(3a0rvac0n) ok (~3ae  vas.) o ax
R4

— Eolde) + Eo(¢) + fR (te 2 6+ e 9 97
= Eo(de) + Eo(d) — el dl|? = Eo(de) + [Eo(d/l#l) — el 4l (3:2)

(i) Taking ¢. = ¢4 and ge = pg in (3.2} and noticing £y (@/119ll) = Eoldg) = kg
for any ¢ # 0, we get immediately that ¢ is a global minimizer of Eo(¢) over 5.

(ii) Teking ¢, = ¢; and g, = p; in (3.2), since Ey (¢g) < Eo(¢;) and it is easy
to find an eigenfunction ¢ of (2.2) such that Eo(#) > Eo(¢;), we get immediately
that ¢; is a saddle point of the functional Eq(¢) over S. m]

3.2. Dynamics of condensate widths

To quantify the dynamics of problems (1.4}, (1.5}, we define the condensate widths
along the a-axis (@ = z,y, 2} as

) = @0 = [ @O dx, oult) = VED: (33)

Rd
Lemma 3.2. Suppose ¥(x,t) is the solution of problems (1.4}, (1.5), then we have

d2d,(t

8D it + [ (ot + B, 020, (39
8a(0) = 60 = / Ai(x)Pdx, a=z,y,2, (3.5)

R
0y = 59) =Im [[ a (Y5 BatPo — o Oatbp) dx] , {3.6)

Rd

where f* and Im(f) denote the conjugate and imaginary part of f respectively.
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Proof. Differentiate (3.3) with respect to ¢, notice (1.4), integrate by parts, we have

dda(t d + *
dt( ) _ d—t/]l;da2|¢(x, 2 dx = fmdaz (W O™ +¥* Opp)dx
i

— 5 | 0?0y — wagtiax = f (o — " Ouhdx.  (3.7)
R4 Re

2
Similarly, differentiate (3.7) with respect to ¢, notice (1.4), integrate by parts,
we have

%5, (t)
dt?

=1 fR [0 o™ + 4 Bast™ — Betp” Do) — 9" Baetpldx
= [ (25 (0 0 — 0" 00) 5 " B — ")
= [ [Fort@uy 2% + 0 80) 1 20V (w0 +° )
~ 3 (0 AU+ AP + 2aabdf? (6 0ab" 14" But)
+2Va() I + 28l Jdx
= [ [210a412 - 199 ~ 1900 (2a¥a(x) — Al + 10
FRVA(OW + 28] dx
= [, [0 + Babbl* — 2al? BVl . 69)
Thus the desired equality (3.4) is a combination of (3.3), (3.8) and (L.6). O

Lemma 3.3. (i) In 1D without interaction, i.e. d = 1 and B4 = 0 in (1.4), we have

E F sy
0z (t) = —-U’Y(Tf—w + (5:(60) - ___(%ﬁo_)) cos(2y,t) + ;— sin(2vzt), t>0. (3.9
(i) In 2D with a radial symmetric trap, i.e. d = 2 and v, = vy, := v in (1.4),

Jor any initial data o(z,y) in (1.5), we have

(1
8-(t) = % + (5,(.0) - -‘?ﬁ—(z'p“—)) cos(2y,t) + 2'7 sin(2y-t), t20, (3.10)

r

where
Br(t) = 8x(t) + 8y (1), 60 := 6,(0) = 6,(0)+8,(0), &) := 5.(0) = &,(0) + 8,(0).

Furthermore, when d = 2 and v, = 7y in (1.4) and the initial data ¢io(x) in (1.5)
satisfying

Yoz, y) = f(r)e™ withmeZ and F(0) =0 when m #0, (3.11)
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we have
1
Oz (t) = ‘sy(t) = §5r(t)
Ep(o) | (s _ Es(tbo) 58 o
_ _ = > 0. .
272 + | &3 202 cos(2vxt) + o sin{2y;t}, t=0 (3.12)

(iii) For all other cases, we have

E o
O (t) = ’5%) (530) - i'g)l)) cos(2vqt) + g—'y; sin(27at) + galt), + 20,

(3.13)
where gq(t) is a solution of the following problem
Loll) | 1y2gutt) = £a(9), 9a(0) = 22 ~0, .19
with
) = [, [210a0 ~ 2190~ Balbl* + (a® ~ Va(OMUP]
satisfying
|falt)] < 4Ep(w0), t20.
Proof. (i) From (3.4) with d =1 and £ = 0 and from (1.8), we have
LoelE) _ 4otpo) - 4260, £>0, (3.15)
-0y = 6, §.(0) = 6. (3.16)

Thus (3.9} is the unique solution of the second-order ODE (3.15) with the initial

data (3.16).
(i) From (3.4) with d = 2, we have

d28,
20— nyoute) + [ (2l0wtl + Bafi, 317)
2

! jfz(t) = 2950, (t) + f (2185w |* + B2lw|*)dx. (3.18)

Add (3.17) and (3.18) with (1.8) and v; = 7y, we have the ODE for &.(f):

2
dj;z(t) = 4Eg(o) — 4728:(t), t>0, (3.19)

6,(0) = 6@, &(0) = 6. (3.20)
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Thus (3.10) is the unique solution of the second-order ODE (3.19) with the initial

data (3.20). Furthermore, when the initial data yp(x) in (1.5) satisfies (3.11), due
to the radial symmetry, the solution ¢(x,t) of (1.4)-(1.5) satisfies

Yz, y,t) = g(r,t)e™  with g(r,0) = f(r). (3.21)
This implies
5o(t) = /]; 229z, O)fdx = /0 > fo 7 12 00520 lg(r 1) 'r df dr
- ”fom r2lg(r, )|r dr = fomfn% r2 sin? 8 |g(r, £)[2r 6 dr
= /ﬂ; ) v (e, y,t)Pdx = 6,(t), t>0. (3.22)

Thus the equality (3.12) is a combination of (3.22) and (3.10).
(tii) From (3.4), notice the energy conservation (1.8) of the GPE (1.4), we have

d25,(t
d,‘;( - 4Ep(o) — 47a0a(t) + falt), t>0. (3.23)
Thus (3.13) is the unique solution of the second-order ODE {3.23) with the initial
data (3.5), (3.6). O

3.3. Conservation of angular momentum ezpectation

Another important quantity for studying dynamics of BEC in 2D and 3D, especially
for measuring the appearance of vortex, is the angular momentum expectation value
defined as

(L)) = f Y Lp(x, dx, t>0, d=2,3, (3.24)
R
where L, =i (yd; — z,) is the z-component angular momenturm.

Lemma 3.4, Suppose P(x,t) is the solution of problems (1.4), (1.5) with d = 2
or 3, then we have

L)) _

= (2o, = [ mvxoPax t20. 32

This implies that, at least in the following two cases, the angular momentum erpec-
tation 15 conserved:

(i) For any given initial data vyo(x) in (1.5), of the trap is radial symmetric in
2D, and resp., cylindrical symmetric in 3D, i.e. v, = Yy

(i} For any given vz > 0 and v, > 0 in (1.6), if the initial data Po(x) in (1.5)
s even in the first variable x or second variable y.
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Proof. Differentiate (3.24) with respect to ¢, (1.4), integrate by parts, we have

UL _ [ ) (0e = a0+ " (ue 283t

= j;d [(§V2¢* = Va(x)¢™ - ﬂd|¢|2¢*) (yde — 28y
e~ aty) (~ 5+ Vo + Bl ) e
= jl;d % [V2¢*(y3z - .'Bay)'fj) _ .¢,*(me o :cBy)qu.b] dx

+ | [ (B — 28y) (Va(x)¥ + Balwf*v)

Rd

— (Va()9* + Balw[*¢*) (y8z — 28y)]dx
= fmd [ (38, — z8y) (Va(x) + Balp?)dx

= [ Wr(w0. a0 Vatdx = [ 062~ ey ax
= (s - 7,,)] zylp*dx, >0 (3.26)

For case (i), since v, = <y, we get the conservation of {L,) immediately from
the first-order ODE:

d(L:)(?)

=0, t>0. 3.
= 0, 0 (3.27)

For case (ii), we know that the solution 1(x,t) is even in the first variable x or
second variable y due to the assumption of the initial data and symmetry of Va(x).
Thus |(x, t)] is even in either x or y, which immediately implies that (L,) satisfies
the first-order ODE (3.27). |

4. Time-Splitting Sine Pseudospectral (TSSP) Method

In this section we present time-splitting sine pseudospectral (TSSP) methods for the
problems {1.4), (1.5) with/without external driven field with homogeneous Dirichlet
boundary conditions. For simplicity of notation we shall introduce the method for
the case of one space dimension (d = 1). Generalizations to d > 1 are straightfor-
ward for tensor product grids and the results remain valid without modifications.
For d = 1, the problem with an external driven field becomes

B = ﬁ% )+ Vi) + Wz, 0+ BB, a<z<b, t>0, (41)
Pz, t =0) = olz), a<z<h Pla,t) = 9(b,t) =0, t=0; (4.2)
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where W(x,t) is an external driven field. Typical external driven fields used in
physical literatures include a far-blued detuned Gaussian laser beam stirrer!®

W (x,t) = W, (£) exp [— (%ﬂf)] , (4.3)

with Wy the height, w, the width, and x,(#) the position of the stirrer; or a Delta-
kicked potential®!

W(z,t) = K cos(kz) i &(t — nr), {4.4)

with K the kick strength, & the wave number, 7 the time interval between kicks,
and &(r) is the Dirac delta function. In order to present the TSSP method, we
rewrite (4.1) in the form

i O =AY+ By, (4.5)

where A and B are two operators and they do not need to commute.

We choose the spatial mesh size b = Az > 0 with h = (b—a)/M for M an even
positive integer, and let z; :=a+j h, § =0,1,..., M. Let %7 be the approximation
of (x;,t,) and ™ be the solution vector at time ¢t = ¢,, = nk with components 7.

4.1. Fourth-order TSSP for GPE without external driven field

When W(z,t) = 0, i.e. without external driven field, the GPE (4.1) can be written
in the form of (4.5) with

AV = Vi@l ) ¢ b O t), BY=—20uv@md). (46

Thus, the key for an efficient implementation of time-splitting is to solve efficiently
the following two subproblems:

i B(z,t) = Bup — —%amfp @7
and

i Oz, 1) = Ay = Vi(z)(z, t) + Bulv(z, 1) 2 (x, t). (4.8)

Equation (4.7) will be discretized in space by the sine pseudospectral method and
integrated in time exacily. For t € [t,,tn,41), the ODE (4.8} leaves || invariant
in%® ¢ and therefore becomes

(2,1} = Va(e)¥(w,t) + Buivp(z, ta) P (x, 1) (4.9)

and thus can be integrated ezactiy.
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From time ¢t = £, to £ = tn41, We combine the splitting steps via the fourth-order
split-step method?5#51! and obtain a fourth-order time-splitting sine pseudospec-
tral (TSSP4) method for the GPE (4.1). The detailed method is given by

M-1
w.gl) — 3—52w1k(V1(Ij)+311¢;|2)¢;}, ,qv}?) — Z e—iw:k.u;a @gl)sin(m(xj —a)),
=1
M-1
¥ = e—i2wak(V1(ﬂ:j)+ﬁ1|¢§2)|2)¢§2), P =3 e—iwakd JOgin(u(z; - a)),
=1
M-1

7,0_,5-5) _ —i2wak(Va (zj)+.61|¢§4)|2)¢§4), 1#3(-6) = Z p—iwaku] «,B,(5)sin(m (z; —a)),
=1

= e—@zwlk(vl(a:j)+ﬁllw§ﬁ’|2)¢§_6), j=1,2,..,M—1, (4.10)
where U}, the sine-transform coefficients of a complex vector U = (Uo, U1,...,U. M)
with Uy = Uar = 0, are defined as

_ ﬁ—iMX_:lU- in(uiz; —a)), 1=1,2...,M—1, (411)
)'J'I—b_aa I—Mj=1 j silt; —ajj, =Ly » .
and?25:11

w; = 0.33780 17979 89914 40851,  w = 0.67560 35959 79828 81702,
w3 = —0.08780 17979 89914 40851, w4 = —0.85120 71979 59657 63405.
The initial condition (4.2) is discretized as
¥? = P(x7,0) = dolzz), 3=0,1,2...,M. (4.12)
Note that the only time discretization error of TSSP4 is the splitting error, which
is fourth order in k for any fixed mesh size A > 0.

This scheme is explicit, time reversible, just as the IVP for the GPE. Also, a
main advantage of the time-splitting method is its time-transverse invariance, just
as it holds for the GPE itself. If a constant o is added to the potential V;, then
the discrete wave functions u‘)}""l obtained from TSSP4 are multiplied by the phase
factor e~*=(m+1E which leaves the discrete quadratic observables unchanged. This
property does not hold for finite difference schemes.

4.2. Second-order TSSP for GPE with ezternal driven field
When Wz, t) # 0, i.e. with an external driven field, the GPE (4.1) can be rewritten
in (4.5) with
1
Ap = —350u¥(w,1), By = Vi(@)p(z, b) + Wz, ty(a, t) + Bulv(z, )9 (z, ).
(4.13)

As the external driven field could be very complicated, e.g. it may be a
Delta-function,® here we only use a second-order split-step scheme in time
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discretization.?* More precisely, from time ¢ = ¢, to ¢ = ¢,,1, we proceed as
follows:

M-1
= 3 e/ {yn), sin(uu(z; - a)),
=1
tntl
2 = exp [—ik(tfl(wj)+ﬁllw}'|2)—i ’ W(rj,t)dt] o (4.14)
in

M-1
?J)""'l Z g~ ikii /4 (1/)**) sin{u(x; —a)), 7=1,2,...,M—1.
=1

Remark 4.1. If the integral in (4.15) could not be evaluated analytically, one can
use numerical quadrature to evaluate, e.g,
tnt1

W (z;, t)dt ~ g W (25, 80) + AW(25, tn + £/2) + W (25, tns1)]

tn

4.3. Stability

Let U = (Up, Un, ..., Un)* with Up = Ups = 0 and let || - lzz be the usual discrete
{2.norm respectwely on the interval (a, b}, i.e.

U]z = (4.15)

For the stability of the time-splitting spectral approximations TSSP4 (4.10) and
second-order scheme (4.15), we have the following lemma, which shows that the
total charge is conserved.

Lemma 4.1. The fourth-order time-splitting sine pseudospectral scheme {TS5P4)
(4.10) and second-order scheme (4.15) are unconditionally stable. In fact, for every
mesh size h > 0 and time step k > 0,

19"l = 190 = Igolle, m=1,2,.... (4.16)

Proof. Follows the line of the analogous result for the linear Schrédinger by time-
splitting Fourier spectral approximation in Refs. 5, 8 and 9. (|

5. Numerical Results
5.1. Numerical accuracy

In this subsection we present numerical results to confirm the spectral accuracy in
space and fourth order accuracy in time for the numerical method (4.10). Compar-
ison with the second-order time-splitting Fourier pseudospectral (TSFP2) method®
for GPE is also reported.
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Example 5.1. 1D Gross-Pitaevskii equation, i.e. in (1.4) we choose d = 1 and
45 = 1. The initial condition is taken as

1 2
- —z°/2
‘11}0(33)—1‘_1/48 =i zrel.

We solve on the interval [—32,32], ie. ¢ = —32 and b = 32 with homogeneous
Dirichlet boundary condition (4.2). We compute a numerical solution by using
TSSP4 with a very fine mesh, e.g. A = 1—55, and a very small time step, e.g. k =
0.0001, as the “exact” solution . Let y™* denote the numerical solution under
mesh size i and time step k.

First we test the spectral accuracy of TSSP4 in space. In order to do so, for
each fixed 1, we solve the problem with different mesh size h but a very small
time step, e.g. k = 0.0001, such that the truncation error from time discretization
is negligible comparing to that from space discretization. Table 1 shows the errors
[(t) — ¥™5(t)]ls> at t = 2.0 with & = 0.0001 for different 5, and h.

Then we test the fourth-order accuracy of TSSP4 in time. In order to do so, for
each fixed 31, we solve the problem with different time step & but a very fine
mesh, eg. h = 61—4, such that the truncation error from space discretization is
negligible comparing to that from time discretization. Table 2 shows the errors
() — ¥™E()||;2 at t = 2.0 with b = g; for different 5, and k.

For comparison, Tables 3 and 4 shows similar numerical results of TSFP2° for
this example as in Tables 1 and 2. '

From Tables 1-2 and 3-4, we can draw the following conclusions: (i) spectral
order accuracy for spatial derivatives and fourth-order accuracy for time derivative
of TSSP4 are demonstrated numerically for 1D GPE, respectively; (ii) for fixed
B; and mesh size h, when time step & sufficiently small, the accuracy of TSS5P4
and TSFP2 are the same; (iii) for fixed 3; and time step k, TSSP4 is much more
accurate than TSFP2. In fact, when $y = 10, TS5P4 needs k = E:-o to achieve

Table 1. Spatial error analysis for TSSP4: Error [{g() — Pk ()] 2
at t = 2.0 with & = 0.0001 in Example 5.1.

— 1 1 —1 _ 1
By =10 0.2745 1.081E-2 1805E-6 3.461E-11
BL =202 1495  0.1657 7.379E-4  T7.588E-10
/=80 1.603  1.637 6.836E-2 3.184E-5  347E-11

Table 2. Temporal error analysis for TSSP4: ||l4%(t) — Wl (t)||;z at t = 2.0 with
h = 6—14 in Example 5.1.

: 1 —_ 1 — .1 .1 — 1 — 1
Tlmestep k_ﬁ k—m k_ﬁﬁ k—m k—m k—gm

£ = 10.0 1.261E-4 8.834E-6 5.712E-7 3.602E-8 2.204E-9 1.422E-10
B =202 1.496E-3 9O.715B-5 6.367F-6 4.034E-7 2529E-8  1.580F-9
£ =80 4475E-2 1.693E-3 8.982E-5 5.852E-6 3.706E-7  2.323E-8
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Table 3. Spatial error analysis for TSFP2: Error |[i(f) — @& (t)|;2 at
t = 2.0 with & = 0.0001 in Example 5.1.

Mesh  h=1 h=3} h=3 h=3g h= 15

fL=10 0.2719 1.077E-2 1.803E-6 1.008E-12
B1=20v/2 1.484 0.1647 7.377TE-4 T7.588E-10
B =80 1.602 1.657 6.807TE-2 3.1B4E-3 1.702E-12

Table 4. Temporal error analysis for TSFP2: |t} — ¢™*(t)||;2 at ¢ = 2.0 with
h= 6% in Example 5.1.

. _ 1 1 . A . 1 _ 1 _ 1
Time step k_E k—m k—% Ic_W k= 555 k= g5
£ =10.0 9.173E-4 2.285E-4 5.708E-5 1.426E-5 3.563E-6 8.880E-7
B =202 4.020E-3 9.945E-4 2.481E-4 6.198E-5 1.548E-5 3.858E-6
5/ =80 2.771E-2 4.768E-3 1.178E-3 2.941E-4 7.343E-5 1.830E-5

the accuracy 10710, but TSFP2 needs about k = g5 in order to achieve the
same accuracy. This implies that the time step of TSFP2 is 80 times less than that
of TSSP4 in order to achieve very high accuracy. Thus the computational time of
TSSP4 may be 25 times less than that of TSFP2.

Another issue is how to choose mesh size h and time step & in the strong repulsive
interaction regime or semiclassical regime, i.e. §3 > 1, in order to get “correct”
physical observables. In fact, after a rescaling in {1.4) under the normalization
(1.7): x = e712x and ¢ — e¥%p with ¢ = g7%/““*? | the GPE (1.4) can be
rewritten as

2
i€ Byp(x, 1) = —%v%p + Va(xw + 9%y, xeR4 (5.1)

Similar as demonstrated in Refs. 8 and 9, the meshing strategy of TSSP4 to capture
“correct” physical observables for this problem is

h=0(), k=0().

Thus the admissible meshing strategy of TSSP4 for GPE with strong repulsive
interaction is

h=0@)=0 (1/53/('“2)) . k=0()=0 (1/ﬁ§/ “’“)) . d=1,2,3. (5.2)

5.2. Dynamics of the ground state

In this subsection we apply TSSP4 to study the dynamics of the ground state and
condensate width. Here the initial data is always chosen as the ground state. This
setup is different from a similar study® in which the initial data was chosen as
either the harmonic oscillator approximation or TF approximation. Furthermore,
here we study the dynamics in 1D, 2D and 3D cases. This is also different from
the results reported in the physical literatures for only 1D and 2D by different

numerical methods,19.18,19,23.43
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Example 5.2, 1D Gross-Pitaevskii equation, i.e. in (1.4) we choose d = 1. The
initial condition is taken as the ground-state solution of (1.4) withd =1, v, =1
and (3 = 20.0,%1? i.e. initially the condensate is assumed to be in its ground state.
At t = 0, we double the trap frequency by setting v, = 2.

We solve this problem on the interval {~12,12] under mesh size b = & and
time step & = 0.005 with homogeneous Dirichlet boundary condition. Figure 1
plots the condensate width and central density [+(0,%)|? as functions of time, as
well as evolution of the density |¢|? in spacetime. One can see from this figure that
the sudden change in the trap potential leads to oscillations in the condensate width
and the peak value of the wave function. Note that the condensate width contracts
in an oscillatory way (cf. Fig. 1{(a)), which agrees with the analytical results in
(3.13).

Example 5.3. 2D Gross-Pitaevskii equation, l.e. in (1.4) we choose d = 2. The
initial condition is taken as the ground-state solution of (1.4) under d = 2 with
Yo =1, 1y = 2 and B» = 20.0,%12 i.e. initially the condensate is assumed to be
in its ground state. At ¢ = 0, we double the trap frequency by setting v, = 2 and

Yy = 4.

We solve this problem on [-8,8]? under mesh size h = 35 and time step
k = 0.005 with homogeneous Dirichlet boundary condition. Figure 2 shows the
condensate widths o, and oy as functions of time and the surface of the density
[[? at time ¢ = 5.4, and Fig. 3 shows the contour plots of the density || at
different times. Again, the sudden change in the trap potential leads to oscillations
in the condensate width. Due to v, = 2-,, the oscillation frequency of o, is roughly
double that of ¢; and the amplitudes of o, are larger than those of ¢, in general
(cf. Fig. 2(a)). Again this agrees with the analytical results in (3.13).

a, (o 0,17
-
5 -

e
@

=
'Y

=
A

(a) (b)

Fig. 1. Numerical results for Example 5.2: (a} condensate width o (solid line) and central density
[+(0,t)|? (dashed line). (b} evolution of the density function |42,
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Fig. 2. Numerical results for Example 5.3: {a} condensate width, (b) surface plot of the density
|2 at ¢ = 5.4.

Example 5.4. 3D Gross—Pitaevskii equation, i.e. in (1.4) we choose d = 3. We
present computations for two cases:

Case 1. Intermediate ratio between trap frequencies along different aris {data for
87Rb used in JILA?). The initial condition is taken as the ground-state solu-
tion of (1.4) under d = 3 with v, = v, = 1, 7, = 4 and f3 = 37.62.%1% At
t = 0, we multiply the trap frequency four times by setting v, = v, = 4 and
Yz = 16.

Case I1. High ratio between trap frequencies along different axis (data for **Na
used in MIT (group of Ketterle)?!). The initial condition is taken as the ground-
state solution of (1.4) under d = 3 with v, = v, = %, v = 1 and 3 =

3.083.412 At ¢t = 0, we double the trap frequency by setting vz = 7, = 222 and

Y = 2.

For case I, we solve the problem on {—6, 6] x [—6, 6] x [—3, 3] with mesh size hy =
hy = % and h, = 63—4, and time step & = 0.0025, and for case II, on [—0.5,0.5} x
[-0.5,0.5] x [—8,8] with hy = hy, = 3, k. = %, and k = 0.0005. Homogeneous
Dirichlet boundary conditions are used for the two cases.

Figure 4 shows the condensate widths o, = ¢, and o, as functions of time, as
well as the surface of the density in zz-plane |(x,0, z,£}{2. Similar phenomena in
case I in 3D is observed as those in Example 5.3 which is in 2D (cf. Fig. 4(a)). The
ratio between the condensate widths increases with increasing ratio between trap
frequencies along different axis, i.e. it becomes more difficult to excite oscillations
for large trap frequencies. In case II, the curves of the condensate widths are very
well separated. This behavior is one of the basic assumptions allowing the reduction
of GPE to 2D and 1D in the cases of one or two of the trap frequencies are much

larger than the others.33:1%:6
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Fig. 3. Contour plots of the density |4{? at different times in Example 5.3. () t = 0, (b} £ = 0.9,
(€) ¢ =18, (d) t=27, (e) t = 3.6, (f) t = 4.5.

5.3. Stability of central vortex states

In this subsection we study numerically the stability of central vortex states. Notice
that similar study was also carried out in the physical literatures'>2%:30 by 5 dif
ferent numerical method, where their method had difficulty in strong repulsive
interaction regime.15
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{c) (d)

Fig. 4. Numerical results for Example 5.4: Left column: Condensate width; right column: Surface
plot of the density in zz-plane, |%{z,0, z,¢)|2. Case I {a) and (b) at t = 1.64. Case II: (c) and (d)
at t =4.5.

We choose d = 2, f2 = 100 and y; =+, = 1 in (1.4). The initial data is chosen
as the central vortex state with setting W = 0. Then we perturb the condensate
by inserting a Gaussian stirrer (given by Eq. (4.3) with w, = 1) at a fixed position
z5(t) = 25 = 3 and ys(t) = ys = 0, with a stirrer height given by W,(¢) = W sin® 2¢
between ¢t = 0 and ¢ = 7/2 with Wy = 10. After ¢t = 7/2, the perturber is removed.
The stability is studied by solving the 2D GPE with an external driven field (4.3)
by the numerical method (4.15). To quantify the numerical results, we define the
hydrodynamic velocity

u = (u,v) = Im(¢" V¢)/[¢[*
Figure 5 shows the velocity field for dynamics of central vortex states with winding
numbers 1 and 2. Furthermore, Fig. 6 plots the time evolution of the energy and
angular momentum expectation for m = 1,2.

From Fig. 5 and additional numerical simulation, we find that the central vor-
tex states with index (or winding number) m = 1 are dynamically stable, and



1

t

+1. To our knowledge, no similar numerical study and results was reported in
t=0

the physical literatures.

and time transverse invariant, for GPE. Due to the limitation of that method, the

authors could not do this study in the strong repulsive interaction regime.!5 Due
to the “good” properties of our numerical method, we do not have that difficulty.

Furthermore, Fig. 6 shows the energy increases and angular momentum expecta-
tion decreases when ¢ € [0,w/2] due to the appearance of the perturber. After

remove the perturber at ¢ = 7/2, they are conserved with time, which confirm the

conservation laws (1.8) and (3.25).
In this subsection we study the interaction between a few central vortices with index

respectively, unstable when |m| > 1. These results confirm the numerical results in
Ref. 15 by fourth-order Runge-Kutta spectral method, which is not time reversible
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5.4. Interaction of central vortex states
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(a} time evolution of the energy Eg(y) and (b) angular momentum expectation (L) for

1,2 in Sec. 5.3.

Fig. 6.
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In order to do so, we choose d = 2, 8, = 100 and Yz = Yy = 1 in (1.4). The
initial data (1.5) is chosen as

M i M .
Hj:i ‘»bg‘: (x - x_?) . Hj:]_ ¢;in, (z — :’B?, y-— y_?) (
y7i ; =M - '
Tz 857 e =Dl |ITTEL, 657 (2 — 20,y - Dl

where M is the total number of vortices, qbﬂmj is the central vortex state of (2.1)
with index m; (m; =1 or —1).

We study ten cases of interaction by solving the 2D GPE (1.4) with initial
data (5.3) by the numerical method (4.10). The parameters for the ten cases are
displayed in Table 5. Figure 7 displays the time-evolution of vortex centers for the
ten cases.

In case I, we study the dynamics of one central vortex. In order to do 50, we shift
the center of a central vortex with winding number m = 1 from the trap center,
Le. the origin (0,0), to x}. This corresponds to shifting the trap center from origin

to —x{. The dynamics of the vortex center is (cf. Fig. 7(a)):

1,b(x, O) =1 (-’L'?y) = 53)

x1(t) = x¥ cost, t>0.
This implies that the dynamics of vortex center satisfies the following ODE:
X)) +x() =0, t>0, x(0) =x, *;(0) =0. (5.4)

From Fig. 7(a), we can see that the vortex center (x1(t), y1(t)) oscillates across the
trap center in a periodic way with period T = 27 and the distance between the
vortex center and the trap center is a periodic function with period T' = 7 which
is independent of the initial position of the central vortex, i.e. xj. A mathematical
justification by constructing exact solution for the GPE in this case is given in
Ref. 26. Our additional numerical experiments show similar results for one central
vortex with index m = —1.

In cases II and III, we study the interaction between two central vortices with
the same index, e.g. m; = mo = 1. In case I1, the centers of the two vortices are
initially symmetric to the trap center, where in III, they are not. From Figs. 7(b)
and (c), we can draw the following conclusions: (i) The centers of the two vortices

Table 5. Setup for different interactions.

Case M x?=(20.3?) m1 xI=(22,48) ma x3=(z0,49) ma
1 1 (1,2) 1
o 2 (1,0) 1 (-1,0) 1

mo 2 (1,0) 1 (0,0) 1

v 2 (1,0) 1 (—1,0) -1
v o2 (1.5,0) 1 (=150)  ~1

VI 2 (1,0) 1 (0,0) -1

VI 2 (3,0) 1 (0,0) -1

VI 3 (1,0} 1 (—1,0) 1 (0,0) 1
X 3 (1,0) 1 (~1,0) 1 (0.505) 1
X 3 (1,0) 1 (—1,0) 1 (=051) -1
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with the same index rotate symmetrically around the trap center in case II (cf.
Fig. 7(b)), and respectively, nonsymmetrically in case III (cf. Fig. 7{c)), which
implies that the symmetry/nonsymmetry between the two vortex centers at £ = 0
is kept during the interaction; (ii) the two vortices do NOT collide at any time;
(iii) the two vortex centers move in a quasi-periodic manner with a period T =~ 47
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and the distance between the two vortex centers is also a quasi-periodic function
with period T' = m, which is independent of the distance between the two vortices at
t = 0 and their initial positions. Similar interaction patterns between two central

vortices with index m; = ms = —1 are observed from our additional numerical
experiments.

In cases IV, V, VI and VII, we study the interaction between two central vortices
with different indices, e.g. m1 = 1 and my = —1. In cases IV and V, the centers of

the two vortices are initially symmetric to the trap center, in VI and VII, they are
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not. In cases IV and VI, the distance between the two vortices at £ = 0 is between 1
to 2, which is about one to two times the core size (R, = 1.11 for 8 = 100, cf. Fig. 6
in Ref. 4) of a central vortex with m = 1; in cases V and VII, it is either much less
or much bigger than the core size. From Figs. 7(d)-(g), we can draw the following
conclusions: (i) The two vortex centers move symmetrically to the trap center in
cases IV and V, and respectively, nonsymmetrically in cases VI and VII, which again
implies that the symmetry/nonsymmetry between the two vortex centers at ¢t = 0
is kept during the interaction; (ii) the two vortices with opposite index will always
collide after some time and then disappear together; (iii) the collision time depends
on the initial distance between the two vortex centers and is almost independent of
the initial positions of the two vortices, the collision time will increase (decrease)
when the initial distance between the two vortices increases and is less (bigger)
than the core size of a central vortex, and usually when the initial distance is equal
to the core size of a central vortex, the collision time attains its maximum,; (iv) when
the initial distance between the two vortex centers is around one to two times, the
core size of a central vortex, the two centers oscillate separately and their distance
also oscillates with time and eventually goes to zero; (v) when the initial distance
between the two vortex centers is much less or bigger than the core size of a central
vortex, the two centers almost go directly to the collision point; (vi) if the centers
of the two vortices are initially symmetric to the trap center, the collision point is
always on the line perpendicular to the line defined by the two initial vortex centers.
In fact, in Tables 6 and 7, we list collision times and coordinates of collision points
with different initial distances and positions.

In cases VIII and IX, we study the interaction between three central vortices
with the same index, e.g. m; = mz = mg = 1. In case VIII, one vortex is initially
put at the trap center and the other two are positioned symmetric to the trap center;
in case [X, the three vortices are put nonsymmetrically. From Figs. 7(h) and (i}, we
can draw the following conclusions: (i} in case VIII the vortex initially at the trap
center does not move at all and the other two vortex centers rotate symmetrically
around the trap center, in case IX, nonsymmetric motion of the vortex centers

Table 6. Collision time and point of the interaction between two opposite central
vortices, which are initially symmetric to the trap center, with different initial

distance.
x9 =9 Distance do  Collision time T,,;;  Collision point xg

(-0.250) (0.25,0) 0.5 0.094 (0,-0.28)
(—0.30)  (0.3,0) 0.6 0.173 (0,~0.39)
(-0.40)  (0.4,0) 0.8 9.02 (0,1.2)
(-0.50)  (0.5,0) 1.0 73.62 (0,-0.16)

(—1,0) (1,0) 2 47.11 (0,0.41)
(~1.250)  (1.25,0) 2.5 3.47 (0,1.32)
(—1.40)  (1.4,0) 2.8 3.321 (0,1.58)

(-1.50)  (L.5,0) 3 3.2544 (0,1.549)
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Table 7. Collision time and point of interaction between two opposite cen-
tral vortices, which are initially not symmetric to the trap center, with dif-
ferent initial distance.

x? x3 Distance dy  Collision time Ty,  Collision point xon
0,0 (0.50) 0.5 0.094 (0.245,—0.28)
0,0) (0.6,0) 0.6 0.174 (0.29,-0.39)
0,0) (0.8,0) 0.8 9.13 (—0.38,1.054)
00  (1,0) 1.0 73.63 (—0.1,—0.165)
00 (20 2 47.12 (~0.99,0.41)
0,0) (2.50) 2.5 3.47 (~1.13,1.32)
0,0) (2.80) 2.8 3.32 (~1.11,1.53)
00 (3,0 3 3.255 (- 1.35,1.5)

is observed, again this implies that the symmetry/nonsymmetry between the three
vortex centers at ¢ = 0 is kept during the interaction; (ii) the three vortices do NOT
collide at any time; (iii) the three vortex centers move in a quasi-periodic manner
with a period T = 37 and the distance between any two vortex centers is also a
quasi-periodic function with period 7' = #, which is independent of the distance
between the two vortices at ¢ = 0 and their initial positions. Similar interaction
patterns between three central vortices with index m; = ma = mg = —1 are
observed from our additional numerical experiments.

In case X, we study the interaction between three central vortices with different
index, e.g. m; = my = 1 and m3 = —1. From Fig. 7(j) we can see that two vortices
with opposite index, initially at (1,0) with index m; = 1 and at (-0.2,1) with
index ms = —1, among the three will collide at the point (0.98,0.616) and both
disappear time ¢t = 3.852. After the collision, there is only one vortex which is
initially at (—1,0) left in the dynamics. Similar interaction patterns between three
central vortices with index m; = 1 and ms = ms = —1 are observed from our
additional numerical experiments.

From the above numerical study, we can draw the following conclusions: (i) inter-
action patterns between several central vortices in BEC is very interesting and com-
plicated; (ii) two central vortices with opposite index will collide and disappear after
some time, and collision time and position depends on the initial distance between
the two vortex centers as well as the core size of one central vortex; (iii) symme-
try/nonsymmetry between the vortex centers at ¢t = 0 is usually kept during the
interaction; (iv) for interaction between vortices with the same indices, the dis-
tance between any two vortex centers is a quasi-periodic function with a period
T =~ 7 which is independent of the distance between the two vortices at ¢ = 0 and
their initial positions; (v) if initially there are N vortices with indices m; (= £1),
j=1,...,N, after some time, there are only Z;il m; single vortices left and all
the others coilide and disappear. Of course, dynamical laws that govern the motion
of vortex centers in interaction between several central vortices, may be an ODE
systemn like {5.4), need further study.
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5.5. Critical angular Sfrequency

In this subsection we find nurnerically the critical angular frequency for single vortex
cycling from the ground state under a far-blue detuned Gaussian laser stirrer!s by
using the numerical method (4.15). Similar numerical simulation has been done in
Ref. 15 by a different humerical method, where their method has difficulty when
By is large.15

In order to do so, we choose d — 2% =v=1in (1.4). The initial data (1.5)
is chosen as the ground state solution of (1.4). At time ¢ — 0, we apply a Gaussian
stirrer (given by Eq. (4.3)) rotating with the trap center as ,(t) = r, cos(w t)
and y,(t) = r, sin(wyt), with s stirrer height given by W,(t) = Wot/ty when 0 <
t < to, and Wy when ¢ > to. Due to the stirrer, vortices may be generated from
the initial ground state. A single vortex enters at the edge of the visible region of
the condensate, then cycles to the center of the condensate, and back to the edge.
This cycle repeats regularly.’® This single vortex cycling occurs when the stirrer
angular frequency w 7 is just below a critical angular frequency, which is denoted as
we.'® The measure of appearance of single vortex cycling is done by computing the
angular momentum expectation value (L,)(¢). It is very easy to see that (1,) = ¢
for the ground state and (Lz) =1 for m =1 central vortex state.

At lower stirring speeds w f» {Liz) remains much less than one (cf. Fig. 8). Asw 1
increases, peak of (L} becomes larger until, for w ¢ only slightly below we, single
vortex reaches the center of the condensate, and at its peak, (L.} approaches one
from below (cf. Fig. 8). If wy is increased above we, multiple vortices penetrate the
condensate and (I,,) exceeds one.

We find the critical angular frequency by solving the GPE with our method
(4.15) for different B2 In our simulation, we take Wy = 2,75 =2 and Wy = 10
in (4.3). Table 8 displays the bounds for each value fa: the lower bound is the

0 10 20 30 40 50 60
t

Fig. 8. Angular momentum expectation values versus time for B2 = 200 with different wy =
0.45,0.305, 0.25,0.1 (in the order of decreasing peak of (L,)).
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Table 8. Critical angular frequency we for 2D BEC.

f2 B £, EL-E} we

25 2,1806 2.8091 0.6285 0.55 ~ 0.65

50 2.896 3.4167 0.5207 .42 ~ 0.55
100 3.9459 4.3689 0.423 0.35 ~ 0.5
200 5.4624 5.8014 0.339 0.30 ~ 0.42
500 8.518 8.7606 0.2488 0.21 ~ 0.32

largest value of wy for which we have observed single vortex cycling, i.e. peak of
(Lz) is near 1, where the upper bound is the smallest value of wy for which we
found multiple vortex behavior, i.e. peak of (L,) is near 2.

From Table 8, we find that the critical angular frequency w, decreases as the
nonlinearity increases. When £3; is not too large, our results agree with the results in
Ref. 15 very well. Due to the high spatial/temporal resolution (5.2) of the method
(4.15), our numerical method can be used to find w, in strong repulsive interaction
regime.

6. Conclusions

Dynamics of the ground state and central vortex states in BEC is studied ana-
lytically and numerically. We prove that the ground state is a global minimizer
of the energy functional over the unit sphere, and all excited states are saddle
points, in linear GPE. Then we study time evolution of condensate width by deriv-
ing a second order ODE mathematically. We also study numerically stability of
central vortex states, interaction of a few central vortices and critical angular fre-
quency for single vortex cycling from the ground state by a fourth-order time-
splitting sine-pseudospectral method. Qur numerical results confirm the ODE for
time evolution of condensate width, show that central vortices with winding num-
ber m = %1 are dynamically stable, and respectively, unstable when |m| > 1.
Furthermore, they also provide very interesting and complicated motion patterns
between central vortex interactions. Numerical comparison with previous methods
for GPE shows that the new method has better spatial/temporal resolution in
strong repulsive interaction regime. Thus it could give better results for studying
BEC in strong repulsive interaction regime or save computational time, especially
in 3D.
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