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a b s t r a c t

In this paper, we propose a fast algorithm for efficient and accurate solution of the
space–time fractional diffusion equations defined in a rectangular domain. The spatial
discretization is done by using the central finite difference scheme and matrix transfer
technique. Due to its nonlocality, numerical discretization of the spectral fractional
Laplacian (−∆)

α/2
s results in a large dense matrix. This causes considerable challenges not

only for storing the matrix but also for computing matrix–vector products in practice. By
utilizing the compact structure of the discrete system and the discrete sine transform, our
algorithm avoids to store the large matrix from discretizing the nonlocal operator and
also significantly reduces the computational costs. We then use the Laplace transform
method for time integration of the semi-discretized system and a weighted trapezoidal
method to numerically compute the convolutions needed in the resulting scheme. Various
experiments are presented to demonstrate the efficiency and accuracy of our method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The space–time fractional diffusion equation, obtained from the standard diffusion equation by replacing the integer-
order spatial and temporal derivatives with their fractional counterparts, has received great attention in the literature [1–9].
It has been widely applied to study the anomalous diffusive processes associated with sub-diffusion (fractional in time) and
super-diffusion (fractional in space) inmany fields [10–12]. However, the nonlocality of the fractional derivatives introduces
considerable challenges in both analysis and simulations of the fractional diffusion equation. In this paper, we present an
efficient and accurate numerical method to solve the space–time fractional diffusion equation, which has significantly less
computational complexity and memory than the existing methods in the literature.

Let Ω ⊂ Rd (for d = 1, 2 or 3) denote an open and bounded domain. We consider a space–time fractional diffusion
equation of the following form [7,2,13,9]:

∂
γ
t u(x, t) = −κα(−∆)α/2

s u(x, t) + f (x, t), x ∈ Ω, t > 0, (1.1)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)
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for 0 < γ < 1 and α > 0, where κα is the diffusion coefficient, and f denotes a source term. The operator ∂
γ
t is defined as

the Caputo fractional derivative of order γ , i.e.,

∂
γ
t u(x, t) =

1
Γ (1 − γ )

 t

0

1
(t − τ)γ

∂τu(x, τ ) dτ , 0 < γ < 1, (1.4)

where Γ (·) represents the Gamma function. As γ → 1, the Caputo derivative in (1.4) gives the first-order temporal
derivative ∂t . The spectral fractional Laplacian (also known as the fractional power of the Dirichlet Laplacian) is defined via
the spectral decomposition [14,13,9,15,7,16,17], i.e.,

(−∆)α/2
s u(x) =


k∈Nd

ck λ
α/2
k ϕk(x), α > 0, (1.5)

where λk and ϕk are the eigenvalues and eigenfunctions of the Laplace operator −∆ on the bounded domain Ω ⊂ Rd with
homogeneous Dirichlet boundary conditions. We would like to specially remark that the operator in (1.5) is different from
the fractional Laplacian with extended homogeneous Dirichlet boundary condition (i.e., u ≡ 0, for x ∈ Rd

\ Ω), although
these two operators are freely interchanged in some literature. The fractional Laplacian (−∆)α/2 is defined via a pseudo-
differential operator with the symbol −|ξ |

α [18,19]:

(−∆)α/2u(x) = F −1
[|ξ |

αF [u](ξ)], α > 0, (1.6)
where F represents the Fourier transform, and F −1 denotes its inverse transform. For α ∈ (0, 2), the fractional Laplacian
can be also defined as the following integral form [19,20,18]:

(−∆)α/2u(x) = cd,α P.V.


Rd

u(x) − u(y)
|x − y|d+α

dy, α ∈ (0, 2), (1.7)

where P.V. stands for the principal value integral, and cd,α denotes a normalization constant. From a probabilistic
point of view, the fractional Laplacian (−∆)α/2 with extended homogeneous Dirichlet boundary condition represents an
infinitesimal generator of a symmetric α-stable Lévy process that particles are killed upon leaving the domain Ω , while the
spectral fractional Laplacian (−∆)

α/2
s represents an infinitesimal generator of the process that first kills Brownian motion

in a bounded domain Ω and then subordinates the killed Brownian motion via a α
2 -stable subordinator; see [21] for more

discussion and comparison of these two operators. To distinguish them, we will include the subscript ‘s’ in the operator
(−∆)

α/2
s to indicate that it is defined via the spectral decomposition.

The nonlocal nature of the spectral fractional Laplacian (−∆)
α/2
s introduces considerable challenges in solving the

space–time fractional diffusion equations (1.1)–(1.3), especially in high spatial dimensions. To the best of our knowledge,
numerical studies of (1.1)–(1.3) in the literature are still limited to one- and two-dimensional problems [13,1,7,9,4,5].
To localize the problem, a Dirichlet-to-Neumann mapping approach is proposed in [22,7], where (−∆)

α/2
s is realized by

an operator mapping the Dirichlet boundary condition to a Neumann type condition, and different numerical methods
are proposed to solve the extended problems [7,1]. In these methods, one solves a local problem instead of the nonlocal
one, however, this comes at the cost of introducing one more spatial dimension to the problem and raises questions
about computational efficiency [7,1]. In [4,9], another approach is proposed to first discretize −∆ by using the finite
difference/element methods and obtain its matrix representation A, and then the matrix representation of the spectral
fractional Laplacian (−∆)

α/2
s can be given by Aα/2. Usually, Aα/2 is a dense matrix, and it is costly to directly compute this

exponent. In [9], to avoid directly evaluating Aα/2, they rewrite the scheme in terms of the matrix function vector product,
g(A)b, for a suitable vectorb, and then approximate this product by preconditioned Lanczosmethods. Later, variousmethods
are proposed in [23] to improve the efficiency in computing g(A)b. In addition, quadrature approximation methods for
discretizing Dunford Taylor integral representation of the inverse operator (−∆)

−α/2
s can be found in [14,24], which can be

applied to solve the fractional diffusion problem.
In this paper, we propose an efficient and accurate numerical method to solve the space–time fractional diffusion

equations (1.1)–(1.3) in a rectangular domain. It is based on the matrix transfer technique proposed in [4]. The main merits
of our algorithm include that it requires less computational cost and memory, and thus it is more efficient in solving
higher dimensional problems. Moreover, our method can be easily implemented in computer codes. The rest of the paper is
organized as follows. In Section 2, we present the spatial discretization of (1.1) and propose a fast algorithm for its efficient
computation. In Section 3, we introduce the Laplace transform for time integration and obtain the full discretization of
the space–time fractional diffusion equation by using the weighted trapezoidal rule. In Section 4, we test the accuracy and
efficiency of the proposed algorithm by studying both time-independent and time-dependent problems. Some conclusions
and remarks are provided in Section 5.

2. Semi-discretization in space

In this section, we introduce a finite difference method for discretizing the spatial operator (−∆)
α/2
s and propose a fast

algorithm based on the discrete sine transform for its efficient computation. We will start introducing our method for the
one-dimensional (d = 1) case and then generalize it to the higher dimensions (d > 1).
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2.1. One-dimensional case

For d = 1, we denote xi (for 0 ≤ i ≤ N) as the uniform grid points and h as the mesh size. Let ui = ui(t) represent the
numerical approximation of the solution u(xi, t), for i ∈ T1, where T1 = {i | 1 ≤ i ≤ N − 1}. Denote the solution vector
as u = (u1, u2, . . . , uN−1)

T . Then, the second order accurate central finite difference method for the Laplace operator
−∆ = −d2x reads:

−∆hu(x, t) = Au(t),

where the tridiagonal matrix A =
1
h2
G(N−1)×(N−1) with

GM×M =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

. . .
. . .

. . .

0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2


M×M

, (2.1)

for anyM ∈ N. It shows in [4] that if A is a matrix representation of a differential operator T , then the matrix representation
of the operator Tα/2 can be given by Aα/2, for α ∈ R. Following it, we obtain the finite difference approximation of (−∆)

α/2
s

as:

(−∆)
α/2
s,h u(x, t) = Aα/2u(t), (2.2)

i.e., Aα/2 can be viewed as a matrix representation of the operator (−∆)
α/2
s . Substituting (2.2) into (1.1) yields the semi-

discretization in space of the one-dimensional fractional diffusion equation:

∂
γ
t u(t) = −καAα/2u(t) + f(t), (2.3)

where the vector f(t) = (f (x1, t), f (x2, t), . . . , f (xN−1, t))T .
Since the matrix A is symmetric positive definite, it can be diagonalized as

A = PΛP−1, (2.4)

where Λ is a diagonal matrix composed of the eigenvalues of A, i.e.,

Λ = diag[λ1, λ2, . . . , λN−1], λi =
4
h2

sin2


iπ
2N


, 1 ≤ i ≤ N − 1, (2.5)

and the matrix P ∈ R(N−1)×(N−1) is defined with its entry

Pi,j = sin

ijπ
N


, i, j = 1, 2, . . . ,N − 1. (2.6)

From (2.4), we obtain

Aα/2
= PΛα/2 P−1 (2.7)

with Λ and P as defined in (2.5) and (2.6), respectively. If N is small, the matrix–vector products in (2.3) can be directly
computed via first obtaining Aα/2 from the matrix diagonalization in (2.4)–(2.7). However, as pointed out in [4,9,7,14], the
computational cost of this approach is extremely high ifN is large. Hence, variousmethods are proposed in [9,23] to improve
the efficiency in evaluating the matrix vector product Aα/2u.

Here, we will propose a fast algorithm to exactly compute the matrix vector product in (2.3). From the definition of P
in (2.6), we find that the product Pu is equivalent to the discrete sine transform (DST) of the vector u, while P−1u can be
realized by the inverse DST of u. Therefore, we can rewrite the semi-discretization scheme in (2.3) as

∂
γ
t u(t) = −κα S1[Λ

α/2S−1
1 [u(t)]] + f(t), (2.8)

where Sd (d = 1, 2, or 3) denotes the d-dimensional DST, and S−1
d represents its inverse transform. We note that the main

idea here is very similar to that used in the popular fast Poisson solver. Thus, the computational cost of evaluating the
matrix vector product in (2.3) can be reduced from O(N2) to O(N logN). Moreover, in contrast to the schemes in [9,23], our
algorithm exactly computes the matrix–vector product, and thus no additional computational errors are introduced.
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2.2. Higher dimensional case

In the following, we will generalize the idea of our fast algorithm from the one dimension to higher dimensions (d > 1).
Let Nk ∈ N represent the number of intervals in the x(k)-direction, for k = 1, 2, . . . , d. Denote x(k)

i (for 0 ≤ i ≤ Nk) as the
uniform grid points in the x(k)-direction with mesh size hk > 0. Denote the index set Td =


(i1, i2, . . . , id) | 1 ≤ i1 ≤

N1 −1, . . . , 1 ≤ id ≤ Nd −1

. Let ui1, ..., id(t) represent the numerical approximation of the solution u(x(1)

i1
, . . . , x(d)

id
, t), for

(i1, . . . , id) ∈ Td. Denote the d-dimensional solution array as U(t) = {ui1, ..., id}(N1−1)×···×(Nd−1), and let u(t) be the vector
formof U(t) by the natural dimension-wise ordering. Then, the central finite difference discretization of the Laplace operator
−∆ = −

d
k=1 ∂2

x(k)
can be written as:

−∆hu(x, t) =

 d
k=1

I1 ⊗ · · · ⊗ Ik−1 ⊗ Ak ⊗ Ik+1 ⊗ · · · ⊗ Id


u(t),

where the matrix

Ak =
1
h2
k
G(Nk−1)×(Nk−1), k = 1, 2, . . . , d

withG defined in (2.1), Ik ∈ R(Nk−1)×(Nk−1) represents the identitymatrix, and⊗ represents the Kronecker product (or tensor
product) of two matrices. Following the same arguments of the one-dimensional case, we can obtain the finite difference
discretization of the operator (−∆)

α/2
s in d-dimension as

(−∆)
α/2
s, h u(x, t) =

 d
k=1

I1 ⊗ · · · ⊗ Ik−1 ⊗ Ak ⊗ Ik+1 ⊗ · · · ⊗ Id

α/2

u(t). (2.9)

In order to introduce a fast algorithm for efficiently computing the right hand side of (2.9), we first rewrite it as d
k=1

I1 ⊗ · · · ⊗ Ik−1 ⊗ Ak ⊗ Ik+1 ⊗ · · · ⊗ Id

α/2

=

∞
m1, ...,md−1=0


α/2

m1, . . . ,md−1

 
A1 ⊗ I2 ⊗ · · · ⊗ Id

m1
· · ·


I1 ⊗ · · · ⊗ Ad−1 ⊗ Id

md−1

I1 ⊗ · · · ⊗ Id−1 ⊗ Ad

 α
2 −

d−1
i=1

mi
, (2.10)

where


α/2
m1,...,md−1


represents the generalized multinomial coefficient for α > 0. For k = 1, 2, . . . , d, the matrix Ak can be

decomposed as:

Ak = Pk Λk P−1
k , (2.11)

where Λk is the diagonal matrix composed of the eigenvalues of Ak, respectively, and Pk is defined in the same manner as
in (2.6), i.e.,

Λk = diag

λ

(k)
1 , λ

(k)
2 , . . . , λ

(k)
Nk−1


, λ

(k)
i =

4
h2
k
sin2


iπ
2Nk


, 1 ≤ i ≤ Nk − 1,

and

(Pk)i,j = sin

ijπ
Nk


, i, j = 1, 2, . . . ,Nk − 1.

Form1 ∈ R, using the decomposition in (2.11), the mixed-product and inverse properties of Kronecker products, we obtain
A1 ⊗ I2 ⊗ · · · ⊗ Id

m1
=


P1 ⊗ I2 ⊗ · · · ⊗ Id


Λ1 ⊗ I2 ⊗ · · · ⊗ Id


P−1
1 ⊗ I2 ⊗ · · · ⊗ Id

m1

=


P1 ⊗ I2 ⊗ · · · ⊗ Id


Λ1 ⊗ I2 ⊗ · · · ⊗ Id

m1

P1 ⊗ I2 ⊗ · · · ⊗ Id

−1

=


P1 Λ

m1
1 P−1

1


⊗ I2 ⊗ · · · ⊗ Id.

Following the similar lines, we get for anymi ∈ R,
I1 ⊗ · · · ⊗ Ii−1 ⊗ Ai ⊗ Ii+1 · · · ⊗ Id

mi
= I1 ⊗ · · · ⊗ Ii−1 ⊗


Pi Λ

mi
i P−1

i


⊗ Ii+1 · · · ⊗ Id. (2.12)
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Substituting (2.10) with (2.12) into (2.9), we obtain

(−∆)
α/2
s, h u(x, t) =

 ∞
m1,...,md−1=0


α/2

m1, . . . ,md−1

 
P1 Λ

m1
1 P−1

1


⊗ I2 ⊗ · · · ⊗ Id


· · ·


I1 ⊗ · · · ⊗


Pd−1Λ

md−1
d−1 P−1

d−1


⊗ Id


I1 ⊗ · · · ⊗ Id−1 ⊗


PdΛ

α
2 −

d−1
i=1

mi

d P−1
d


u(t) (2.13)

in terms of the solution vector u.
We now focus on rewriting the scheme (2.13) in terms of the solution array U(t), such that the matrix–vector products

in it can be efficiently computed by our fast algorithm. To this end, we first introduce two operators. For a matrix A ∈

R(Nl−1)×(Nl−1) and an array U ∈ R(N1−1)×···×(Nd−1), we define the operator x⃝l as:
A x⃝lU


i1,...,id

=

Nl−1
j=1

Ail,jUi1,...,il−1, j, il+1,...,id ∈ R(N1−1)×···×(Nd−1).

It is easy to verify that for any 1 ≤ j, l ≤ d, the two operators x⃝j and x⃝l are commutative, i.e.,

A x⃝j B x⃝l U = B x⃝l A x⃝j U.

We also define the operator ⊙ of two arrays U,V ∈ R(N1−1)×···×(Nd−1) as
U ⊙ V


i1,...,id

= Ui1,...,idVi1,...,id ,

i.e., element by element multiplication of arrays. By the definition of the Kronecker product and our new operators, we can
rewrite (2.13) from the vector form of u(t) into the form of the d-dimensional array U(t) as:

(−∆)
α/2
s, h u(x, t) =

∞
m1,...,md−1=0


α/2

m1, . . . ,md−1


P1 Λ

m1
1 P−1

1


x⃝1 . . .

x⃝d−2


Pd−1 Λ

md−1
d−1 P−1

d−1


x⃝d−1


Pd Λ

α
2 −

d−1
i=1

mi

d P−1
d


x⃝d U(t)

=

∞
m1,...,md−1=0


α/2

m1, . . . ,md−1


P1 x⃝1 P2 x⃝2 . . . x⃝d−1 Pd

x⃝d


Qm1,...,md ⊙


P−1
1 x⃝1 P

−1
2 x⃝2 . . . x⃝d−1 P

−1
d x⃝d U(t)


, (2.14)

where the d-dimensional array Qm1,...,md is composed of


Qm1,...,md


i1, ..., id

=


λ

(1)
i1

m1
· · ·


λ

(d−1)
id−1

md−1

λ

(d)
id

 α
2 −

d−1
i=1

mi
,

for (i1, i2, . . . , id) ∈ Td. The scheme in (2.14) can be further written as:

(−∆)
α/2
s, h u(x, t) = P1 x⃝1 P2 x⃝2 . . . x⃝d−1 Pd x⃝d

 ∞
m1, ...,md−1=0


α/2

m1, . . . ,md−1


Qm1, ...,md



⊙


P−1
1 x⃝1 P

−1
2 x⃝2 · · · x⃝d−1 P

−1
d x⃝d U(t)


= P1 x⃝1 . . . x⃝d−1 Pd x⃝d


Hd ⊙


P−1
1 x⃝1 . . . x⃝d−1 P

−1
d x⃝d U(t)


, (2.15)

where the d-dimensional array Hd is defined as

(Hd)i1,...,id =

∞
m1, ...,md−1=0


α/2

m1, . . . ,md−1

 
Qm1, ...,md


i1, ..., id

=

 d
k=1

λ
(k)
ik

α/2

, (2.16)

for (i1, i2, . . . , id) ∈ Td.
Note that the scheme in (2.15) is the d-dimensional array form of (2.13). Noticing the definition of the matrix Pk, we can

apply the d-dimensional DST or its inverse transform to compute the special products in (2.15) [25,26], i.e.,

P1 x⃝1 . . . x⃝d−1 Pd x⃝d U(t) = Sd[U(t)],

P−1
1 x⃝1 . . . x⃝d−1 P

−1
d x⃝d U(t) = S−1

d [U(t)].
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Thus, the spatial semi-discretization scheme of the d-dimensional fractional diffusion equations (1.1) can be written as

∂
γ
t U(t) = −κα Sd


Hd ⊙ S−1

d [U(t)]

+ F(t), (2.17)

where the d-dimensional array F(t) =

f (x(1)

i1
, x(2)

i2
, . . . , x(d)

id
, t)


(N1−1)×···×(Nd−1). As a result, the computational cost for

computing the spatial approximations is only O(Nd logN) where N = max1≤k≤d Nk, instead of O(Nd+1) by directly using
the matrix–vector multiplications.

Remark 2.1. For the time-independent fractional diffusion equation

κα(−∆)α/2
s u(x) = f (x), x ∈ Ω, (2.18)

u(x) = 0, x ∈ ∂Ω, (2.19)

its solution (steady state) can be computed by

U =
1
κα

Sd

Ld ⊙ S−1

d [F ]


(2.20)

with the d-dimensional array Ld defined as
Ld


i1,...,id

= 1/

Hd


i1,...,id

, (i1, i2, . . . , id) ∈ Td.

3. Fully discrete scheme

In this section, we present time integration of the semi-discretized scheme in (2.17) to obtain a fully discrete system
for numerical solution of the fractional diffusion equations (1.1)–(1.3). Since the system (2.17) is linear in time, we use the
Laplace transform for time integration [9]. For other numerical methods of the Caputo fractional derivative, we refer readers
to [27] and references therein.

LetU(s) = L{U}(s) denote the Laplace transform of U(t). Taking the Laplace transform and then the inverse DST at both
sides of (2.17) yields

sγ S−1
d

U(s)

− sγ−1S−1

d


U(0)


= −κα


Hd ⊙ S−1

d

U(s)


+ S−1
d

F(s).
Solving the above equation, we obtain

U(s) = Sd


1

s + κα s1−γ (Hd)k


k∈Td

⊙


S−1
d


U(0)


+ s1−γ S−1

d

F(s)
, (3.1)

where Td is the d-dimensional index set. We then take the inverse Laplace transform of (3.1) and obtain the numerical
solution of (1.1)–(1.3) at time t as

U(t) = Sd


Mγ ,1

d (t) ⊙ S−1
d


U(0)


+


tγ−1Mγ ,γ

d (t)


S−1
d


F(t)


, t ≥ 0. (3.2)

For any a, b > 0,Ma,b
d (t) defines a d-dimensional array function with

Ma, b
d (t)


i1,...,id

= Ea,b

−κα(Hd)i1,...,id t

γ

, for (i1, . . . , id) ∈ Td, (3.3)

and Ea,b(z) represents the Mittag-Leffler function defined as

Ea,b(z) =

∞
k=0

zk

Γ (ak + b)
.

In practice, the Mittag-Leffler function Ea,b(z) can be efficiently computed by using the algorithm proposed in [28]. The
operator is defined as

(U V)i1,...,id =

 t

0
Ui1,...,id(t − τ)Vi1,...,id(τ ) dτ ,

i.e., element by element convolution of two arrays U(t) and V(t).
If the function f is time-dependent, one usually has to evaluate the convolutions in (3.2) numerically. Here, we introduce

a weighted trapezoidal method for its computation. To simplify notations, let us denote

ξk = −κα


Hd


k, Gk(t) =


S−1
d [F(t)]


k , for k ∈ Td.
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Then, each convolution in (3.2) can be written as t

0

Eγ ,γ


ξksγ


s1−γ

Gk(t − s)ds =

 ε

0

Eγ ,γ


ξksγ


s1−γ

Gk(t − s)ds +

 t

ε

Eγ ,γ


ξksγ


s1−γ

Gk(t − s)ds, (3.4)

for k ∈ Td. Here, 0 < ε ≪ 1 is a very small number.
Assuming that Gk is uniformly bounded on (0, t), then it holds

lim
ε→0

 ε

0

Eγ ,γ


ξksγ


s1−γ

Gk(t − s)ds = 0.

Define time sequence tn = ε + nτ (for n = 0, 1, . . .) with τ a uniform time step. Then at time t = tn, we introduce a
weighted trapezoidal method to approximate the second integral in (3.4), i.e., tn

ε

Eγ ,γ


ξksγ


s1−γ

Gk(tn − s)ds =

n−1
i=0

 ti+1

ti

Eγ ,γ


ξksγ


s1−γ

Gk(tn − s) ds

≈

n−1
i=0

Gk(tn − ti) + Gk(tn − ti+1)

2

 ti+1

ti

Eγ ,γ


ξksγ


s1−γ

ds.

Simplifying it, we obtain the approximation tn

ε

Eγ ,γ


ξksγ


s1−γ

Gk(tn − s)ds ≈

n−1
i=0

Gk(tn−i) + Gk(tn−i−1)

2


tγi+1Eγ ,γ+1


ξkt

γ

i+1


− tγi Eγ ,γ+1


ξkt

γ

i


.

Combining the above approximation with (3.2), we obtain the numerical solution at t = tn as:

Un
= Sd


Mγ ,1

d (tn) ⊙ S−1
d


U0

+
1
2


tγ1 M

γ ,γ+1
d (t1) − tγ0 M

γ ,γ+1
d (t0)


⊙ S−1

d


F(tn)


+

n−1
i=1


tγi+1M

γ ,γ+1
d (ti+1) − tγi−1M

γ ,γ+1
d (ti−1)


⊙ S−1

d


F(tn−i)


+


tγn M

γ ,γ+1
d (tn) − tγn−1M

γ ,γ+1
d (tn−1)


⊙ S−1

d


F(t0)


, n = 0, 1, . . . , (3.5)

where Un denotes the numerical approximation of U(tn). It shows that the solution at time t = tn depends on all of those at
previous steps, since the Caputo fractional derivative is a nonlocal operator.

Remark 3.1. As γ → 1, there is

lim
γ→1

Eγ ,γ (z) = E1,1(z) = ez, for z ∈ R.

Thus, the solution in (3.2) converges to

U(t) = Sd


Md(t) ⊙ S−1

d


U(0)


+ Md(t) S−1

d


F(t)


, t ≥ 0,

with the array Md(t) defined as
Md(t)


i1,...,id

= exp

−κα(Hd)i1,...,id t


, for (i1, . . . , id) ∈ Td

i.e., the solution of the standard space-fractional diffusion equation.

Remark 3.2. If f is time-independent, i.e., f (x, t) ≡ f (x) for any t > 0, the convolutions in (3.2) can be computed explicitly.
Hence, the solution in (3.2) reduces to

U(t) = Sd


Mγ ,1

d (t) ⊙ S−1
d


U(0)


+


tγMγ ,γ+1

d (t)

⊙ S−1

d


F


, t ≥ 0.

Remark 3.2 implies that if the function f is time-independent, our scheme is exact in time, and thus the only numerical
errors are from the spatial discretization.

4. Numerical experiments

In this section, we will investigate the performance of the proposed fast algorithm for solving the diffusion problem
(1.1)–(1.3) and its steady state through various examples.
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Table 1
Spatial discretization errors ∥uh − uexact∥2 and convergence rates in solving (4.1)–(4.2) with the source term (4.5) in Example 1.

α h
1/16 1/32 1/64 1/128 1/256 1/512 1/1024

0.4 5.378E−4 1.342E−4 3.353E−5 8.381E−6 2.095E−6 5.238E−7 1.310E−7
C.R. 2.0028 2.0007 2.0002 2.0000 2.0000 2.0000

1.0 3.632E−4 9.049E−5 2.260E−5 5.650E−6 1.412E−6 3.531E−7 8.827E−8
C.R. 2.0049 2.0012 2.0003 2.0001 2.0000 2.0000

1.4 2.125E−4 5.289E−5 1.321E−5 3.301E−6 8.253E−7 2.063E−7 5.158E−8
C.R. 2.0063 2.0016 2.0004 2.0001 2.0000 2.0000

2.0 8.201E−5 2.038E−5 5.089E−6 1.272E−6 3.179E−7 7.947E−8 1.987E−8
C.R. 2.0084 2.0021 2.0005 2.0001 2.0000 2.0000

2.9 1.670E−5 4.141E−6 1.033E−6 2.582E−7 6.454E−8 1.614E−8 4.034E−9
C.R. 2.0115 2.0029 2.0007 2.0002 2.0000 2.0000

4.0 2.091E−6 5.172E−7 1.290E−7 3.222-8 8.053E−9 2.013E−9 5.03E−10
C.R. 2.0154 2.0038 2.0010 2.0002 2.0002 2.0007

4.1. Steady states

We first study steady states of the two-dimensional diffusion problem and test the spatial accuracy of our method. Let
the domain Ω = (0, 1)2. We solve the problem of the following form:

(−∆)α/2
s u(x, y) = f (x, y), (x, y) ∈ Ω, (4.1)

u(x, y) = 0, (x, y) ∈ ∂Ω. (4.2)

Its exact solution can be easily found from the definition of (−∆)
α/2
s as:

uexact(x, y) =

∞
m=1

∞
n=1

λ−α/2
mn

fmn ϕmn(x, y), (x, y) ∈ Ω, (4.3)

where λmn and ϕmn are eigenvalues and eigenfunctions of the two-dimensional Dirichlet Laplace operator −∆, i.e.,

λmn = (m2
+ n2)π2, ϕmn(x, y) = 2 sin(mπx) sin(nπy), m, n ∈ N,

and the coefficients

fmn =

 1

0

 1

0
f (x, y)ϕmn(x, y) dx dy, m, n ∈ N. (4.4)

In our simulations, we choose the mesh size as h := hx = hy and denote uh as the numerical solution. The spatial accuracy
of our method will be studied for various functions f .

Example 1. We choose the function

f (x, y) = sin(2πx) sin(2πy). (4.5)

Then, the exact solution in (4.3) reduces to

uexact(x, y) =
1

8α/2 πα
sin(2πx) sin(2πy).

This example has been used as a benchmark to test the accuracy of the numerical methods in [7,1] for solving (4.1)–(4.2),
where a PDE approach based on the Dirichlet-to-Neumann mapping is used.

Table 1 presents the spatial discretization errors ∥uh − uexact∥2 and the convergence rate (‘‘C.R.’’) of our method, for
various α > 0. It shows that for fixed mesh size h, numerical errors decrease when the power α increases. Moreover, our
method has the second order rate of convergence, independent of the power α.

Example 2. We consider a constant function

f (x, y) ≡ 1. (4.6)

In contrast to (4.5), it is smooth but incompatible as it does not vanish at the boundary. Then the exact solution uexact(x, y)
is given by (4.3) with

fmn =
2(1 − (−1)m)(1 − (−1)n)

mnπ2
, for m, n ∈ N.
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Fig. 1. Plots of the solution u(x, y) of (4.1)–(4.2) with the source term (4.6) for different α in Example 2.

Table 2
Spatial discretization errors ∥uh − uexact∥2 and convergence rates in solving (4.1)–(4.2) with the source term (4.6) in Example 2.

α h
1/16 1/32 1/64 1/128 1/256 1/512 1/1024

0.4 3.950E−3 2.023E−3 1.055E−3 5.563E−4 2.944E−4 1.550E−4 7.993E−5
C.R. 0.9651 0.9392 0.9235 0.9182 0.9252 0.9556

1.0 1.210E−3 4.046E−4 1.359E−4 4.621E−5 1.590E−5 5.523E−6 1.928E−6
C.R. 1.5807 1.5737 1.5565 1.5391 1.5257 1.5181

1.4 4.844E−4 1.328E−4 3.579E−5 9.567E−6 2.548E−6 6.776E−7 1.801E−7
C.R. 1.8667 1.8918 1.9036 1.9088 1.9108 1.9113

2.0 1.345E−4 3.384E−5 8.473E−6 2.119E−6 5.299E−7 1.325E−7 3.312E−8
C.R. 1.9913 1.9975 1.9993 1.9998 1.9999 2.0000

2.9 1.942E−5 4.853E−6 1.213E−6 3.033E−7 7.583E−8 1.896E−8 4.739E−9
C.R. 2.0008 2.0000 2.0000 2.0000 2.0000 2.0001

4.0 8.389E−7 2.123E−7 5.321E−8 1.331E−8 3.329E−9 8.32E−10 2.08E−10
C.R. 1.9826 1.9960 1.9991 1.9996 2.0004 2.0000

Fig. 1 illustrates the solution u(x, y) for α = 0.8 and 2. It shows that the steady state is symmetric with respect to the
center of the domain, and itsmagnitude reduceswhenα increases. Furthermore, boundary layersmay appear in the solution
u if α is small; the smaller the power α, the sharper the boundary layers.

Table 2 presents the numerical errors ∥uh − uexact∥2 and convergence rates for various α. In practice, the exact solution
in (4.3) is approximated by truncating it into finite terms, i.e., 1 ≤ m, n ≤ 214. Table 2 shows that for a fixedmesh size h, the
discretization errors reduce when α increases. We find that the convergence rate of our method in this case depends on the
power α. From Table 2 and our extensive simulations, we conjecture that in this case our method has a convergence rate of
O(hp), where

p =


α +

1
2
, if α <

3
2
,

2, otherwise,

that is, the power α = 3/2 is a critical point of the convergence rate.

Example 3. We choose f as a step function, i.e.,

f (x, y) =


1, if (x − 1/2)(y − 1/2) > 0,
−1, otherwise (4.7)

which is incompatible and discontinuous. In this case, the exact solution of (4.1)–(4.2) is given by (4.3) with

fmn =
2

mnπ2


cos(nπ) − 2 cos

nπ
2


+ 1


cos(mπ) − 2 cos

mπ

2


+ 1


, form, n ∈ N.

Fig. 2 displays the solution u(x, y) for α = 0.8 and 2. It shows that although the function f is discontinuous along the
lines of x = 1/2 and y = 1/2, the solution u is continuous everywhere. Moreover, it is antisymmetric with respect to these
two lines. The smaller the power α, the larger the magnitude of the solution u.

Table 3 illustrates the numerical errors ∥uh − uexact∥2 and convergence rates of our methods for various α, where again
the exact solution uexact is obtained by truncating (4.3) into terms for 1 ≤ m, n ≤ 214. Similar to previous examples, for a
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Fig. 2. Plots of the solution u(x, y) of (4.1)–(4.2) with the source term (4.7) for different α in Example 3.

Table 3
Spatial discretization errors ∥uh − uexact∥2 and convergence rates in solving (4.1)–(4.2) with the source term (4.7) in Example 3.

α h
1/16 1/32 1/64 1/128 1/256 1/512 1/1024

0.1 2.555E−1 1.736E−1 1.162E−1 7.718E−2 5.109E−2 3.377E−2 2.229E−2
C.R. 0.5573 0.5795 0.5900 0.5951 0.5976 0.5989

0.4 1.206E−1 6.974E−2 3.932E−2 2.185E−2 1.204E−2 6.593E−3 3.596E−3
C.R. 0.7904 0.8267 0.8474 0.8602 0.8687 0.8747

1.0 3.715E−2 1.916E−2 9.717E−3 4.892E−3 2.454E−3 1.229E−3 6.151E−4
C.R. 0.9555 0.9794 0.9901 0.9952 0.9976 0.9988

1.4 1.937E−2 9.931E−3 5.026E−3 2.529E−3 1.268E−3 6.351E−4 3.178E−4
C.R. 0.9638 0.9824 0.9912 0.9955 0.9977 0.9989

2.0 7.731E−3 3.964E−3 2.007E−3 1.010E−3 5.064E−4 2.536E−4 1.269E−4
C.R. 0.9637 0.9820 0.9910 0.9955 0.9978 0.9989

4.0 3.897E−4 1.994E−4 1.009E−4 5.076E−5 2.546E−5 1.275E−5 6.379E−6
C.R. 0.9665 0.9828 0.9913 0.9956 0.9978 0.9989

fixed mesh size h, the larger the power α, the smaller the numerical errors. Moreover, the convergence rate depends on the
power α. Our extensive simulations show that the convergence rate of our method is O(hp) with

p =


α +

1
2
, if α <

1
2
,

1, otherwise.

Compared to that in Example 2, the convergence rate in this case is lower due to the discontinuity of the function f .

4.2. Evolution dynamics

Due to the nonlocality of the operator (−∆)
α/2
s , the computational costs and memory of high dimensional problems are

considerably large. So far, no report on three-dimensional results can be found in the literature yet. In the following, we
will apply our method to study the dynamics of the fractional diffusion equations (1.1)–(1.3) in both two-dimensional and
three-dimensional cases.

Example 4. We solve the two-dimensional fractional diffusion equations (1.1) on the domain Ω = (0, 1)2, where the
diffusion coefficient κα = 0.1, and the source function

f (x, y) =
√
2e−t sin(πx) sin(πy). (4.8)

The initial condition in (1.3) is taken as

u0(x, y) = xy(1 − x)(1 − y), (x, y) ∈ [0, 1]2. (4.9)

Fig. 3 presents the simulated time evolution of u(x, y, t) for α = 0.4 or 1.6, where γ = 0.6 is fixed. When t is small, the
dynamics are dominant by the source term f , which makes the solution u increase over time. But, the diffusion becomes
significant after certain time, and thus the solution quickly decays. We find that the decay rate depends on α—the larger the
power α is, the faster the solution diffuses.
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(a) α = 0.4 and γ = 0.6.

(b) α = 1.6 and γ = 0.6.

Fig. 3. Time evolution of the solution of (1.1)–(1.3) with κα = 0.1, the source term (4.8), and the initial condition (4.9) in Example 4.

Table 4
Temporal discretization errors ∥uh,τ (t) − uexact(t)∥2 and convergence rates in solving (1.1)–(1.3) for time t = 0.5 with κα = 0.1, the source term (4.8),
and the initial condition (4.9) in Example 4.

(α, γ ) τ

1/32 1/64 1/128 1/256 1/512

(0.4, 0.6) 1.814E−4 5.257E−5 1.466E−5 3.900E−6 9.642E−7
C.R. 1.7868 1.8425 1.9118 2.0145

(1.0, 0.6) 1.810E−4 5.250E−5 1.465E−5 3.894E−6 9.586E−7
C.R. 1.7853 1.8417 1.9114 2.0143

(1.4, 0.6) 1.791E−4 5.208E−5 1.455E−5 3.871E−6 9.586E−7
C.R. 1.7819 1.8396 1.9103 2.0138

(2.0, 0.6) 1.694E−4 4.980E−5 1.401E−5 3.741E−6 9.279E−7
C.R. 1.7659 1.8299 1.9049 2.0112

(1.4, 0.2) 3.818E−4 1.301E−4 4.142E−5 1.211E−5 3.174E−6
C.R. 1.5528 1.6518 1.7741 1.9319

(1.4, 0.5) 2.569E−4 7.791E−5 2.249E−5 6.120E−6 1.535E−6
C.R. 1.7216 1.7924 1.8777 1.9953

(1.4, 0.8) 7.389E−5 1.988E−5 5.231E−6 1.338E−6 3.241E−7
C.R. 1.8944 1.9258 1.9677 2.0451

(1.4, 1.0) 2.327E−5 5.812E−6 1.449E−6 3.579E−7 8.522E−8
C.R. 2.0011 2.0042 2.0171 2.0704

Table 4 lists the temporal discretization errors ∥uh,τ (t) − uexact(t)∥2 and convergence rates at time t = 0.5, where the
‘‘exact’’ solution uexact(t) is numerically obtained by solving the diffusion problem (1.1)–(1.3) with fine mesh size and time
step, i.e., h = τ = 1/2048. In all simulations, we fix the spatial mesh size h = 1/2048 and choose the small parameter
ε = 0.001. We find that the temporal errors reduce as the power α and/or γ increases, and our method has a convergence
rate of O(τ 2) in time. As discussed previously, the only temporal errors in our proposed method come from numerically
evaluating the convolutions, which can be improved if a higher order quadrature method is used.

To further demonstrate its effectiveness, in the following example we will apply our method to study the dynamics of
the three-dimensional fractional diffusion equations (1.1)–(1.3).

Example 5. Westudy the diffusion problem (1.1)–(1.3) on the domainΩ = (0, 1)3, where the diffusion coefficient κα = 0.1
and a time-periodic source function is applied:

f (x, y, z, t) = 0.1 exp


−20


x −
1
2

2
+


y −

1
2

2
+


z −

1
2

2
sin(4π t).



1940 S. Duo et al. / Computers and Mathematics with Applications 75 (2018) 1929–1941

(a) α = 0.5 and γ = 0.4.

(b) α = 0.5 and γ = 0.8.

(c) α = 1.3 and γ = 0.8.

Fig. 4. Time evolution of the diffusion equations (1.1)–(1.3) with different parameter sets in Example 5, where the isosurface plots of u(x, y, z, t) = 0.05
are presented.

The initial condition in (1.3) is chosen as

u0(x, y, z) = | sin(2πx) sin(2πy)|(z − z2), (x, y, z) ∈ [0, 1]3. (4.10)

Fig. 4 presents the simulated isosurface plots of u(x, y, z, t) = 0.05 for various powers α and γ . Initially the solution
is not smooth, but it is quickly smoothed along the dynamics. This phenomenon is similar to that observed in the classical
diffusion equation (i.e., α = 2 and γ → 1). The nonlocality of (−∆)

α/2
s usually demands extremely large computational

costs and memory, which hampers the existing numerical methods from solving (1.1)–(1.3) in three dimensions. However,
our method with fast algorithm significantly reduces the computational costs, and thus it is effective in simulating high
dimensional problems.

5. Conclusions

We proposed a fast algorithm for efficient and accurate solutions of the fractional diffusional equation with the spectral
fractional Laplacian in space and the Caputo fractional derivative in time. Usually, numerical discretization of the spectral
fractional Laplacian results in a large dense matrix. In practice, it is challenging not only to store the matrix but also to
compute the matrix–vector products, especially in high dimensional cases. In our method, the central finite difference
scheme and matrix transfer technique are used for spatial discretization. We utilized the compact structure of the discrete
system and introduced a fast algorithmbased on the discrete sine transform. Ourmethod avoids to store the large coefficient
matrix and significantly reduces the computational costs in the study of fractional diffusion problems. For time integration,
we proposed the Laplace transformmethod and introduced aweighted trapezoidalmethod to approximate the convolutions
in the resulting scheme. Our method is exact in time if the source term is time-independent; otherwise, it has the second
order of accuracy in time. Our fast algorithm is easy to implement and effective for simulating the fractional diffusion
equation. We conducted systematic numerical experiments to test the accuracy of the method. Rigorous numerical analysis
on the accuracy will be carried out in our future work.
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