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Abstract: We analytically and numerically investigate the stability and dynamics of the plane wave
solutions of the fractional nonlinear Schrödinger (NLS) equation, where the long-range dispersion is
described by the fractional Laplacian (−∆)α/2. The linear stability analysis shows that plane wave
solutions in the defocusing NLS are always stable if the power α ∈ [1, 2] but unstable for α ∈ (0, 1). In
the focusing case, they can be linearly unstable for any α ∈ (0, 2]. We then apply the split-step Fourier
spectral (SSFS) method to simulate the nonlinear stage of the plane waves dynamics. In agreement
with earlier studies of solitary wave solutions of the fractional focusing NLS, we find that as α ∈ (1, 2]
decreases, the solution evolves towards an increasingly localized pulse existing on the background of
a “sea” of small-amplitude dispersive waves. Such a highly localized pulse has a broad spectrum,
most of whose modes are excited in the nonlinear stage of the pulse evolution and are not predicted
by the linear stability analysis. For α ≤ 1, we always find the solution to undergo collapse. We also
show, for the first time to our knowledge, that for initial conditions with nonzero group velocities
(traveling plane waves), an onset of collapse is delayed compared to that for a standing plane wave
initial condition. For defocusing fractional NLS, even though we find traveling plane waves to be
linearly unstable for α < 1, we have never observed collapse. As a by-product of our numerical
studies, we derive a stability condition on the time step of the SSFS to guarantee that this method is
free from numerical instabilities.

Keywords: fractional nonlinear Schrödinger equation; fractional Laplacian; plane wave solution;
modulation instability; split-step method; numerical stability

1. Introduction

The fractional Schrödinger equation was first introduced in [1,2] as the path integral
of Lévy trajectories. Later, it was also derived from a microscopic lattice system with
long-range interactions when passing to the continuum limit [3]. In contrast to its clas-
sical counterpart, the fractional Schrödinger equation can model nonlocal interactions,
which enables it to describe complex phenomena in various fields; see in [1,2,4–9] and
references therein. In this paper, we refer to these nonlocal interactions as “long-range
dispersion”, because in the classical limit (i.e., for α = 2 in (1) below), the corresponding
term describes group velocity dispersion of linear waves. However, the nonlocality of the
fractional Schrödinger equation also introduces considerable challenges in understand-
ing the properties of its solutions [10–13]. In this paper, we analytically and numerically
study the dynamics of the simplest—plane wave—solutions of the fractional nonlinear
Schrödinger (NLS) equation and reveal effects of the long-range dispersion on the stability
and dynamics of plane wave solutions.

We consider the one-dimensional fractional NLS of the following form [2,3,5,6,11,14]:
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i∂tu(x, t) = (−∆)
α
2 u + γ|u|2u, x ∈ R, t > 0, (1)

where i =
√
−1 is the imaginary unit, and u(x, t) is a complex-valued wave function. The

constant γ ∈ R describes the strength of local (or short-range) nonlinear interactions, where
the interactions are repulsive (defocusing) if γ > 0 or attractive (focusing) if γ < 0. The
fractional Laplacian (−∆)

α
2 is defined via a pseudo-differential operator [5,15–17]:

(−∆)
α
2 u(x, t) := F−1[|µ|αF (u)], for α > 0, (2)

where F and F−1 denote, respectively, the Fourier transform and its inverse, and µ
is the wave number. In a special case of α = 2, the definition in (2) reduces to the
classical Laplace operator −∆, and thus Equation (1) becomes the classical (non-fractional)
cubic NLS. In this paper, we will focus on the case with 0 < α ≤ 2, in which case (2)
represents the action of a nonlocal operator that describes the long-range dispersion
mentioned above [3,10,18,19]. Note that physical relevance of the case α < 1 has not been
universally accepted. Nonetheless, this case was considered for the Majda–McLaughlin–
Tabak model [7], and therefore we also include it into the scope of our analysis.

The fractional NLS (1) has two important conserved quantities: the L2–norm, or mass
of the wave function,

N(t) :=
∫
R
|u(x, t)|2dx =

∫
R
|u(x, 0)|2dx = N(0), t ≥ 0, (3)

and the total energy,

E(t) :=
∫
R

[∣∣∇ α
2 u
∣∣2 + γ

2
|u|4

]
dx = E(0), t ≥ 0, (4)

where ∇α = −(−∆)
α
2 . These conserved quantities can be used as benchmarks to test the

performance of numerical methods for the fractional NLS.
Plane wave solutions are the simplest nontrivial solutions of the NLS. Understand-

ing their dynamics and stability provides insight into the behavior of more complicated
solutions. In the classical (α = 2) NLS, stability of the plane wave solutions is well known
to critically depend on the sign of nonlinearity: If the nonlinearity is defocusing (γ > 0),
the plane waves are always stable, whereas they are subject to long-wave instability in
the focusing (γ < 0) case. This instability is known as the Benjamin–Feir instability in the
context of water waves or as the modulational instability in the context of plasma physics
and nonlinear optics. Unstable perturbations in the classical NLS do not grow without
bound. For the fractional NLS, the dynamics of even the simplest nontrivial solution—the
plane wave—is still not completely understood. One contribution of this paper is to study
stability of both standing and traveling plane waves with respect to small perturbations. To
our knowledge, modulational instability of the plane wave solutions of the fractional NLS
was studied in [20]; however, its authors considered a different—spatio-temporal, in three
dimensions—model, and therefore its results cannot be compared to those presented here.

While linear stability of plane wave solutions can be studied analytically, the non-
linear stage of their dynamics has to be studied numerically. One of the most popular
numerical methods in studies of the NLS has been the split-step Fourier spectral (SSFS)
method [11,21–27]. The SSFS method preserves exactly the mass conservation and disper-
sion relation of the NLS (1). However, the SSFS method could also introduce numerical
instabilities which have no analytical counterparts. To interpret its results with confidence,
one thus needs to ensure that the method does not introduce numerical, or spurious,
instability. Such numerical instability of the SSFS method in simulating the plane wave
solutions of the classical NLS has been studied in, e.g., [21,23–26], but it is missing in the
literature on the fractional NLS. A second contribution of this paper is a detailed study
of the conditions that ensure numerical stability of the SSFS method when it is used to
simulate plane wave solutions of the fractional NLS.
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Finally, we study with the SSFS the nonlinear stage of the evolution of perturbed
plane waves. Our results for standing plane waves (i.e., those not moving in the reference
frame of Equation (1)) are consistent with earlier results by the authors of [14,28], which
showed increased localization of the field as α decreased and, in particular, demonstrated
wave collapse in finite time for α = 1. However, to our knowledge, previous studies
did not consider dynamics of traveling solutions. (The only exception known to us is
in [29]; however, its authors proved the existence of a localized traveling wave solution
for 1 < α < 2, but did not actually find its analytical or numerical form.) Thus, a third
main contribution of this paper is a study of the nonlinear dynamics of traveling (plane)
waves, which turns out to be quantitatively (although not qualitatively) different from that
of standing waves.

This paper is organized as follows. In Section 2, the stability of plane wave solutions
in the fractional NLS is studied by a linear stability analysis. In Section 3, the SSFS method
is described, and its numerical stability condition is obtained. In Section 4, we numerically
study the dynamics of the unstable plane wave solutions in the fractional NLS, revealing the
role played by the long-range dispersion. Conclusions of this study are made in Section 5.

2. Plane Wave Solution and Its Stability

The fractional NLS (1) admits the plane wave solution of the form

u(x, t) = a exp(i(λkx−ωt)), (5)

provided that the following nonlinear dispersion relation is satisfied

ω = |λk|α + γ|a|2. (6)

The constants a and λk are the amplitude and the wave number, respectively, of the
plane wave. A wave packet consisting of plane waves (5) with wave numbers in a narrow
interval near λk 6= 0 would move with a group velocity

vg =
∂ω

∂λk
= α sgn(λk)|λk|α−1, for λk 6= 0, (7)

where sgn(·) denotes the sign function. For this reason, we will refer to a plane wave with
λk 6= 0 as a traveling plane wave, contrasting it with a standing plane wave, which has
λk = 0. In simulations reported in subsequent sections, we will consider a finite domain of
size L, i.e., [−L/2, L/2], and thus the wave number is chosen as

λk = 2kπ/L, k ∈ Z.

Without loss of generality, we will assume λk ≥ 0 in this paper.
Due to the nonlinearity of NLS, the plane wave solution (5) is stable only under certain

conditions. Here, we will focus on its linear stability analysis in the NLS (1) with the power
α ∈ (0, 2]. Consider a perturbed solution of the form

ũ(x, t) = u(x, t)(1 + ε(x, t)), (8)

where u(x, t) is the plane wave solution in (5), and ε(x, t) is a small perturbation function
satisfying |ε| � 1. We assume that ε is periodic, and it can be expressed in Fourier series as

ε(x, t) = ∑
l∈Z

ε̂ l(t) exp(iµl x)

with µl = 2lπ/L, for l ∈ Z. In what follows, we set Re(ε̂0(0)) = 0 without loss of generality.
Indeed, having Re(ε̂0(0)) 6= 0 simply rescales the amplitude a of the unperturbed wave (5)
in the order O(ε).
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Substituting (8) into the NLS (1) and taking the leading order terms of ε, we obtain

∂tε(x, t) = i
(
|λk|αε− ∑

l∈Z
ε̂ l(t)|λk + µl |α exp(iµl x)− γ|a|2(ε∗ + ε)

)
, (9)

where ε∗ represents the complex conjugate of ε. Taking the Fourier transform of (9) and its
complex conjugate, we get the following system of ODEs:

d
dt

(
ε̂ l

ε̂∗−l

)
= Gl

(
ε̂ l

ε̂∗−l

)
, l ∈ Z\{0}, (10)

where

Gl = i
(
|λk|α − γ|a|2 − |λk + µl |α −γ|a|2

γ|a|2 −|λk|α + γ|a|2 + |λk − µl |α
)

.

The eigenvalues of matrix Gl are

Λ±l = − i
2
(
|λk + µl |α − |λk − µl |α

)
± 1

2

√
∆l , (11)

where

∆l = −
[(
|λk + µl |α + |λk − µl |α

)
− 2|λk|α

][(
|λk + µl |α + |λk − µl |α

)
− 2
(
|λk|α − 2γ|a|2

)]
. (12)

The solution of system (10) grows exponentially if at least one of the eigenvalues Λ±l
has positive real part, which occurs if

∆l > 0. (13)

In other words, if the condition (13) holds for at least one l ∈ Z\{0}, the plane wave
solution (5) is unstable.

Below, we will focus on how the instability condition (13) depends on the power α and
the wave number λk. It is well known that the plane wave solutions in the classical (α = 2)
NLS are always stable in the defocusing cases and unstable in the focusing cases. Moreover,
stability of the plane wave solutions in the classical NLS is independent of its wave number
λk. In contrast, both these well-established facts no longer hold in the fractional (0 < α < 2)
NLS: the plane wave may be unstable in the defocusing case, and its (in)stability is affected
by λk. These situations are delineated in Theorems 1 and 2 below.

Theorem 1 ( Defocusing NLS with γ > 0).

(i) For α ∈ (0, 2], a standing plane wave is always stable to infinitesimal perturbations.
(ii) For α ∈ [1, 2], a traveling plane wave is always stable, independent of the wave number λk.
(iii) For α ∈ (0, 1), a traveling plane wave could be unstable if γ|a|2 is sufficiently large. Moreover,

the growth rate of this instability is maximized at modes with |µl | = |λk|, if the following
condition is satisfied:

|λk|α <
4γ|a|2
2− 2α

, α ∈ (0, 1). (14)

When α = 2, our conclusions in Theorem 1 (i)–(ii) reduce to those in the literature [23,25]
that a plane wave solution is always stable in the classical defocusing NLS, independent of
its wave number. In the fractional NLS, the standing plane wave is always stable, but the
stability of traveling plane waves crucially depends on the fractional order α.

Figure 1 shows that for α ∈ [1, 2], traveling plane waves are always stable, confirm-
ing the conclusion in Theorem 1 (ii). By contrast, they are unstable for α ∈ (0, 1), and
the instability is substantially affected by the wave number λk. It shows that unstable
modes appear in the low-µ region, and their number generally increases with |λk|. If
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the condition (14) is satisfied, the growth rate of the instability reaches its maximum at
µl = ±λk (see Figure 1a,b), confirming the conclusion in Theorem 1 (iii). However, if
the condition (14) is not satisfied, there exist stable bands centered at ±λk, which are
surrounded by unstable modes (these stable bands are clearly visible in Figure 1d for
α ∈ (0, 0.735)).

−1 −0.5 0 0.5 1

0.5

1

1.5

2

µ
l

α
γ = 1,  λ

k
 = 0.25

 

 

0.05

0.1

0.15

0.2

−1 −0.5 0 0.5 1

0.5

1

1.5

2

µ
l

α

γ = 1,  λ
k
 = 0.5

 

 

0

0.05

0.1

0.15

0.2

(a) (b)

−1 −0.5 0 0.5 1

0.5

1

1.5

2

µ
l

α

γ = 0.2,  λ
k
 = 0.25

 

 

0

0.01

0.02

0.03

0.04

−1 −0.5 0 0.5 1

0.5

1

1.5

2

µ
l

α

γ = 0.2,  λ
k
 = 0.5

 

 

0

0.01

0.02

0.03

0.04

(c) (d)

Figure 1. Contour plots of Re(Λ+
l ) to show the stability of traveling plane wave solutions with

a = 0.5 in the defocusing NLS. Note that the instability growth rate, indicated by the numbers on the
right of the colorbars, is smaller for the smaller values of γ (in panels (c) and (d)).

Theorem 2 (Focusing NLS with γ < 0).

(i) For α ∈ (0, 2], a standing plane wave is unstable, provided that there is at least one l ∈ Z\{0}
such that |µl |α < 2|γ||a|2. Moreover, the number of unstable pairs is given by

np =

⌊
L(2|γ||a|2)1/α

2π

⌋
, for α ∈ (0, 2], (15)

where b·c denotes the floor function.
(ii) For α ∈ (0, 2], a traveling plane wave is unstable, if L and/or |γ||a|2 are sufficiently large.

Theorem 2 (i) implies that if |µ1|α > 2|γ||a|2, all standing plane waves in the focusing
NLS are stable; see the cases of α ∈ (0, 0.15) in Figure 2a.

Otherwise, unstable modes appear in the low-µ region, i.e., the region of |µl | <
(2|γ||a|2)1/α. It implies that for α ∈ (0, 1), the bandwidth of instability is strongly affected
by the nonlinearity |γ||a|2. In the special case of α � 1, the bandwidth of instability is
exponentially small if 2|γ||a|2 < 1 (see Figure 2a), while if 2|γ||a|2 > 1, this bandwidth is
exponentially large (see Figure 2b, the thin light-green “band” near bottom).
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Figure 2. Contour plots of Re(Λ+
l ) to show the stability of standing plane wave solutions with

a = 0.5 in the focusing NLS. Note that when α > 1, one Re(Λ+
l ) > 0 (i.e., instability is present) for

|µl | � 1, although their values are small.

Figure 3a–d presents the stability situation of traveling plane waves in the focusing
NLS, which is more complicated than that of standing plane waves. For α ∈ (1, 2], unstable
modes always lie in a low-pass band, i.e., instability occurs for small |µl |. By contrast,
two distinctive phenomena are observed for α ∈ (0, 1]: (i) there is a “stable gap” in the
low-µ region. Moreover, the bandwidth of this “stable gap” is around

(
1+ (2− 2α)1/α

)
|λk|

for α ∈ (0, 1], and in the special case of α = 1 it reduces to λk. Indeed, there is ∆l < 0
in (12) for the wave numbers satisfying |µl | < µcr, where the critical wave number µcr
is defined as the positive root of

(
|λk + µ|α + |λk − µ|α − 2|λk|α

)
. Therefore, the wave

numbers satisfying |µ| ≤ µcr are stable. (ii) The bandwidth of instability expands rapidly
as α decreases. To show it, we take the Taylor expansion of (12) for |µl | � λk and obtain

∆l ≈ −4
(
|µl |α − λα

k
)(
|µl |α − λα

k + 2γ|a|2
)
. (16)

Note that despite condition |µl | � λk, the term of λk cannot be neglected if α is
sufficiently small.
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Figure 3. Contour plots of Re(Λ+
l ) to show the stability of traveling plane wave solutions with

a = 0.5 in the focusing NLS. For α > 1, Re(Λ+
l ) > 0 (i.e., instability is present) for |µl | � 1, although

their values are small. In contrast, there is a “stable gap” at low-µ region if α < 1
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In fact, it is this term that is responsible for the expansion of the unstable band
compared to the case of λk = 0. Indeed, the instability condition (13) along with (16)
implies the unstable modes:

|µl | <
(

λα
k + 2|γ||a|2

)1/α
.

As the exponent 1/α > 1, it suffices for the base to exceed one in order to make
|µl | > 1, which makes the right-hand side rapidly increase as α is decreased.

3. Split-Step Fourier Spectral Method

In this section, we first briefly describe the split-step Fourier spectral (SSFS) method
for solving the fractional NLS (1) and discuss some of its well-known properties. For
our purposes, the first-order SSFS method suffices; if higher accuracy is sought in time,
higher-order SSFS method are well known [11,22,27,30,31]. In Section 3.2, we investigate
the numerical stability of the SSFS method when it is used to compute plane wave solutions
of the NLS.

3.1. Description of the SSFS Method

Let τ > 0 be the time step, and define tn = nτ for n = 0, 1, . . . From time t = tn to
t = tn+1, one numerically solves the NLS (1) in two steps:

iut(x, t) = γ|u|2u, (17)

iut(x, t) = (−∆)
α
2 u. (18)

For t ∈ (tn, tn+1], Equation (17) conserves the quantity |u(x, t)| ≡ |u(x, tn)|, and
consequently it reduces to a linear equation for u(x, t). Integrating it in time gives the
solution to (17):

u(x, t) = u(x, tn) e−iγ|u(x,tn)|2(t−tn), t ∈ [tn, tn+1].

To obtain a numerical solution of (18), we consider a computational domain [−L/2, L/2]
with periodic boundary conditions. Due to the definition of the fractional Laplacian in (2),
the Fourier spectral method is the most natural method for spatial discretization of (18).
Choose an even integer J > 0, and define the mesh size h = L/J and spatial grid points
xj = −L/2 + jh, for 0 ≤ j ≤ J. We take

u(xj, t) =
J/2−1

∑
m=−J/2

ûm(t) eiµmxj , (19)

where the m-th Fourier mode ûm(t) is defined as

ûm(t) =
1
J

J−1

∑
j=0

u(xj, t) e−iµmxj , − J
2
≤ m ≤ J

2
− 1.

Substituting (19) into (18), taking the discrete Fourier transform, and integrating the
resulting ordinary differential equation for ûm(t), one obtains

ûm(t) = ûm(tn) e−i|µm |α(t−tn), t ∈ [tn, tn+1], − J
2
≤ m ≤ J

2
− 1. (20)

Combining (20) with (19) leads to an approximate solution of (18).
Finally, denoting the numerical approximation of u(xj, tn) by un

j , one obtains the
first-order SSFS method as
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un+1,−
j = un

j e−iγ|un
j |

2τ , (21)

un+1
j =

J/2−1

∑
m=−J/2

ûn+1,−
m e−i|µm |ατ eiµmxj , 0 ≤ j ≤ J − 1, n = 0, 1, . . . (22)

The SSFS method (21)–(22) has spectral accuracy in space and first-order accuracy in
time; the latter can be easily improved by employing higher-order split-step
schemes [11,22,27,30,31]. This method is explicit and thus easy to implement. In ad-
dition, it exactly preserves the discrete L2-norm (mass) of the solution, as well as the
dispersion relation ω = |λk|α + γ|a|2 of plane wave solutions of the fractional NLS for any
α ∈ (0, 2] [22]. These quantities are also preserved by higher-order SSFS method. Due to all
these features, the SSFS is one of the most popular methods for solving the classical NLS;
for the same reasons it can be equally effectively applied to the fractional NLS.

3.2. Stability of the SSFS Method

In this subsection, we study numerical stability of the SSFS method (21)–(22) when it
is used to simulate plane wave solutions in (5). The stability condition that we will obtain is
essential to enable one to simulate the fractional NLS time-efficiently. That is, it allows one
to select the time step small enough so as to avoid numerical artifacts, and yet not too small
so as to avoid excessively large simulation times. Our approach is substantially different
from those used in [24,25], due to the facts that α 6= 2 and λk 6= 0. Here, we assume

λk � µmax, (23)

where µmax is the maximum wave number resolved by the spectral grids. Note that
this assumption does not restrict the value of λk to be small, as one can have, e.g., λk =
0.1µmax � 1 for a sufficiently large µmax.

At time t = tn, we consider a perturbed plane wave solution:

un
j = ũn

j (1 + εn
j ), with ũn

j = aei(λkxj−ωtn), (24)

where εn
j , with |εn

j | � 1, is a small periodic perturbation on [−L/2, L/2] and can be
expanded as:

εn
j =

J/2−1−k

∑
l=−J/2−k

ε̂ n
l eiµl xj , 0 ≤ j ≤ J − 1. (25)

In contrast to (19), a different range of indices is used in the summation of (25). This
is the main difference in the analysis for nonzero wave number λk 6= 0 from the by-now
standard analysis for λk = 0 [25]. In fact, the perturbation term in (24) is ũn

j εn
j , which has

effective wave number of (λk + µl) ≡ µk+l rather than just µl . To ensure this wave number
fits into the range of [µmin, µmax], we have to require µl ∈ [µmin − λk, µmax − λk], resulting
in asymmetric summation indices in (25). In order to emphasize this difference compared
to the symmetric summation indices in Section 3.1, we use a different letter—l in (25)
instead of m in (19). This labeling convention of indices will be used in the remainder of
this subsection: m and l, respectively, for the Fourier transform of the solution, ûm, and the
multiplicative perturbation, ε̂ l .

Setting n = n + 1 in (24) and taking its discrete Fourier transform, one obtains

ûn+1
m = a e−iωtn+1

{
1 + ε̂n+1

0 , m = k,
ε̂n+1

m−k, m 6= k,
− J

2
≤ m ≤ J

2
− 1. (26)
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On the other hand, ûn+1
m can be independently found from the SSFS scheme (21)–(22).

To this end, we substitute un
j from (24) into (21) and take the leading order terms of εn

j
to obtain

un+1,−
j = ũn

j e−iγ|a|2τ
(
1 + εn

j − iγ|a|2τ(εn
j + (εn

j )
∗)
)
, 0 ≤ j ≤ J − 1. (27)

Substituting (27) into (22) and taking its discrete Fourier transform, we obtain

ûn+1
m = a e−i(ωtn+γ|a|2τ+|µm |ατ)


1 + ε̂n

0, m = k;

ε̂n
m−k − iγ|a|2τ(ε̂n

m−k + (ε̂n
k−m)

∗), (m− k) ∈ Smain;

ε̂n
m−k − iγ|a|2τ(ε̂n

m−k + (ε̂n
k−m−J)

∗), (m− k) ∈ Saliased.
(28)

For m = k, we have used the convention Re(ε̂n
0) = 0, adopted in Section 2. Further-

more, we have split the wave number indices l ≡ (m− k) of the perturbation terms ε̂n
m−k

into the “main" and “aliased" sets defined as

Smain = {l | − (J/2− 1− k) ≤ l ≤ J/2− 1− k}, (29)

Saliased = {l | − J/2− k ≤ l ≤ −J/2 + k}. (30)

To understand this choice, note that when (m− k) ≡ l is within one of these sets, then
the indices of both ε̂- and ε̂∗-terms in each line in (28) are within the same set. For Smain,
this is evident, while for Saliased this follows from the fact that discrete Fourier transform
“wraps” (i.e., aliases) indices modulo J when they fall outside the range [−J/2, J/2− 1].
Note that the aliased region Saliased was considered in the SSFS stability study for the
classical NLS in [24], where stability on the background of traveling waves was studied,
but did not need to be considered in the SSFS stability study on the background of a
standing plane wave [25], because in that case Saliased is an empty set.

Carrying on and comparing (28) with (26) and their complex conjugates, we obtain
the following equations:(

ε̂n+1
l

(ε̂n+1
s )∗

)
= Al

(
ε̂n

l

(ε̂n
s )
∗

)
, for − J

2
− k ≤ l ≤ J

2
− 1− k, (31)

where we let l = m− k, and denote s as

s =
{
−l, if l ∈ Smain;
−(l + J), if l ∈ Saliased.

The matrix

Al =

(
(1− iγ|a|2τ)e−i(|µk+l |α−|λk |α)τ −iγ|a|2τe−i(|µk+l |α−|λk |α)τ

iγ|a|2τei(|µk+s |α−|λk |α)τ (1 + iγ|a|2τ)ei(|µk+s |α−|λk |α)τ

)

has eigenvalues

Λl,± =
(

cos θl − γ|a|2τ sin θl

)
±
√
(cos θl − γ|a|2τ sin θl)

2 − 1 (32)

with
θl =

τ

2
(
|µl + λk|α + |µs + λk|α − 2|λk|α

)
. (33)

The solution of system (31) will exponentially grow if either |Λl,+| > 1 or |Λl,−| > 1.
From (32), we then deduce the instability condition summarized below.
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Lemma 1 ( General instability condition). The unstable modes of the SSFS method in simulating
a plane wave solution in (5) satisfy∣∣∣cos θl − γ|a|2τ sin θl

∣∣∣ > 1, (34)

with θl being defined in (33).

We remark that Lemma 1 predicts both analytically unstable modes as described
in (13) and numerically unstable modes introduced by the SSFS method. In what follows,
we assume that the time step τ is small enough such that

|γ||a|2τ � 1, (35)

which is necessary to ensure accuracy of the SSFS method. We then divide our discussion
of the instability condition (34) into two parts. On one hand, with assumption (35) the
condition

(
cos θl − γ|a|2τ sin θl

)
> 1 is satisfied only when |θl | � 1, implying that un-

stable modes in this case occur only in the main spectral region. Furthermore, the Taylor
expansion of

(
cos θl − γ|a|2τ sin θl

)
> 1 up to terms O(τ2) yields(

|µl + λk|α + |µl − λk|α − 2|λk|α
)(
|µl + λk|α + |µl − λk|α − 2(|λk|α − 2γ|a|2)

)
< 0,

i.e., the same condition as in (13). Therefore, the condition
(

cos θl − γ|a|2τ sin θl
)
> 1

in (34) predicts the analytically (i.e., truly) unstable modes of the plane wave solutions.
On the other hand, the numerical instability condition of the SSFS method is given by(

cos θl − γ|a|2τ sin θl
)
< −1, (36)

which occurs when θl ≈ π + 2nπ (for n ∈ Z). Then, we have the following results:

Theorem 3 (Numerical stability condition). Assume that the wave number λk � µmax and the
nonlinearity |γ||a|2τ � 1. Then, the SSFS method remains numerically stable, provided that the
time step satisfies

τ <


π1−αhα

max
{
(1 + (1− 2r)α)/2, (1− r)α

}
− rα

, if r = 0, or r 6= 0 and α > αcr(r)

π1−αhα

(1− 2α−1)rα
, if r 6= 0 and α ≤ αcr(r)

(37)

where the ratio r = λk/µmax, and the critical value αcr(r) < 1 is defined as satisfying

2− 2α−1 =
(
(1− r)/r

)α;

it is plotted in Figure A1b. Note that the condition in the second line of (37), when it applies, sets a
smaller stability threshold than that in the first line.

A detailed derivation of this Theorem can be found in Appendix A. The condition (37)
implies that the larger the speed of the simulated plane wave, the larger the time threshold
of numerical stability. In simulating the standing plane wave solutions, the stability
condition for the SSFS method reduces to τ < π1−αhα for any α ∈ (0, 2].

Corollary 1 (Classical NLS with α = 2).

(i) For the classical NLS (α = 2), condition (37) reduces to

τ <
h2

π (1− λk/µmax)2 , (38)
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in agreement with the conclusions in [25] for λk = 0 and [24] for λk 6= 0.
(ii) For the practical case of λk/µmax ≡ r � 1, the first line of condition (37) reduces to

τ <
π1−αhα

(1− αr)− rα + O(r2)
.

Remark 1. The condition (37) suggests that for α � 1, the stability threshold of time step may
become O(1). However, such a large time step cannot be used solely from the accuracy perspective.
Therefore, in this case a reasonable requirement to impose on the time step is (35).

The analysis of this section can be generalized to higher-order split-step methods. We
have numerically verified that the stability condition (37) remains the same for a fourth-
order split-step method, although the growth rate of the numerical instability has been
observed to be different. This sameness of the stability condition and the difference of the
instability growth rates for the SSFS applied to the fractional NLS parallels that for the case
of the classical NLS [32].

4. Dynamics of Plane Wave Solutions

Here, we study the dynamics of unstable plane wave solutions by directly simulating
the NLS (1) with the first-order SSFS method. In selected cases, we have verified that
using a fourth-order SSFS method does not affect the conclusions. Our main goal here is to
highlight effects of the fractional, versus classical, Laplacian, on the dynamics of the plane
wave solutions beyond the linear stage of the analytical instability development.

The initial condition is chosen as a perturbed plane wave solution of the follow-
ing form:

u(x, 0) = a eiλkx
(

1 + ε0 cos
2πx

L

)
, − L

2
≤ x ≤ L

2
, (39)

where a and ε0 are constants, and |ε0| � 1. Note that the shape of this perturbation has
a maximum at the middle of the computational window and minima at its boundaries.
Therefore, for the standing plane waves, this perturbation is expected to favor the emer-
gence of a pulse in the middle of the computational domain. Perturbations that have
maxima at different locations will favor formation of pulses there. This all pertains to the
initial stage of the evolution; at later times, the pulses begin to move due to their interaction
with many different Fourier harmonics created from the background noise, which thus
generically have different magnitudes. Nonetheless, our simulations show that various
initial perturbations of a similar size may do not affect our conclusions about differences
between the fractional and classical NLS.

In the following, we choose ε0 = 10−5 and a = 1
2 in (39). Unless stated otherwise, we

set domain length L = 5π with number of grid points J = 213. In all cases considered, we
selected the time step τ according to condition (37) so as to avoid numerical instability.

4.1. Standing Plane Waves

In the defocusing NLS, the analysis in Theorem 1 (i) shows that the standing plane
waves are always stable for any α ∈ (0, 2], and our numerical simulations confirm this.
Therefore, below we report results for the standing plane wave in the focusing NLS. We
chose λk = 0 in the initial condition (39) and γ = −1 in the NLS (1).

For the parameters stated in the preamble for this Section, formula (15) predicts that
for any α ∈ (0.76, 2], there exists one pair of unstable modes with l = ±1 on the spectral
grid µl , and thus the standing plane wave is linearly unstable. Figure 4 presents the time
evolution of |u(x, t)| for different α. It shows that the solution remains a plane wave for a
short time, and then around t = 50 (which, of course, depends on the parameters chosen
in (39)) one hump appears due to the instability. For α . 2, the hump retains its shape only
for a short period of time, after which it dissolves into a delocalized state (a plane wave for
α = 2), then reassembles itself again, and this process goes on approximately periodically.
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As α decreases, the time interval between the hump reappearances decreases, and both it
and the amplitude of the re-emerging pulse become more and more irregular. As α→ 1+,
the solution tends to form a narrow pulse (see Figure 4 bottom row). For α ∈ (0.76, 1], the
plane wave was found to collapse. (For α < 0.76, there are no unstable modes according to
(15), and thus the plane wave remains stable. The more analytically unstable modes exist in
the computational domain (which can be controlled either by the domain’s length L or by
the wave’s amplitude |a|), the earlier the collapse occurs. Furthermore, the modulational
instability growth rate, found from Equations (11)–(13), has an evident effect on the time
of the collapse occurrence.) The above observations about collapse are consistent with
findings in [14,28], which also demonstrated collapse for α < 1, albeit in their case the
initial condition was a localized solitary wave. It is also similar to what has been reported
about solutions of the Majda–McLaughlin–Tabak model, a model with nonlocality in both
dispersion and nonlinearity, which has been proposed to mimic wave turbulence [4,7,8].

Figure 4. Dynamics of unstable standing plane waves in the focusing NLS with γ = −1 and L = 5π.
The recurrence of plane wave solution is observed in the classical NLS.
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Figure 5 displays the time evolution of the spectrum of the solution u(x, t), with the
corresponding density dynamics shown in Figure 4.

Figure 5. Time evolution of log10 |F [u(x, t)]| for unstable standing plane waves in the focusing
NLS with γ = −1 and L = 5π. We show only the range µ > 0 because the solution’s spectrum is
symmetric about µ = 0. Also, the one-sided width of the computational spectral domain that we used
was twice as large as shown in the figure.

In the NLS with α equal or close to 2, the spectrum expands (almost) periodically as
the unstable modes evolve. The smaller the fractional order α, the more frequently the
spectrum expands and shrinks, and also the broader the expanded spectrum becomes.
When α is sufficiently close to 1, the spectrum expands quickly after the analytical instability
is triggered, but does not shrink back (see Figure 5 for α = 1.1).

Let us note that for a given power α, a smaller nonlinearity (i.e., the value of |γ||a|2)
results in a less broad spectrum of the emerging pulse (cf. Figure 6 for γ = −0.8). Addi-
tionally, the time required for the formation of a narrow pulse increases as the nonlinear-
ity decreases.
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Figure 6. Dynamics of unstable standing plane waves in the focusing NLS with γ = −0.8 and
L = 5π.

The Fourier spectrum shown in Figure 5 illustrates the role of long-range dispersion
that is described by the fractional Laplacian (−∆)

α
2 . Due to an interplay of nonlinearity

with long-range dispersion, the instability at low wave numbers triggers creation of new
harmonics in the high wave number region. The smaller the fractional power α, the
stronger the long-range interactions, and thus the stronger this effect. While the linear
analysis predicts this instability, it could not predict that the instability would lead to a
dramatic spectral expansion. Numerical simulations were required to reveal this nonlinear
stage of the instability development. Our observations are consistent with those reported
in the literature [19], where a discrete (with finite inter-site spacing) version of the NLS
with long-range interactions was studied. As we noted in Section 1, the continuum limit
of such a discrete equation leads to the fractional NLS. In fact, it is stated in [19] that
reproducing their results within the framework of a continuous fractional NLS was then
an open problem; we have addressed this problem here.

To conclude this section, we present, in Figure 7a,b, snapshots of the field and its
Fourier spectrum at time instances shortly before the collapse occurs (the last snapshot is
taken within 0.1 time unit from the instance when the Fourier spectrum becomes essen-
tially flat).
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Figure 7. The field and its Fourier spectrum for L = 5π, γ = −1, α = 0.9 , λk = 0, a = 0.5, taken
at time instances indicated in the legend. Only part of the resolved Fourier spectrum is shown in
panel (b). At all simulated times before the collapse, the magnitude of the Fourier spectrum at the
edge of the computational spectral window is on the order of 10−12.

A feature to note is the cusp in the spectrum at µ = 0. This signals a slow decay of
the field u with x, which is due to the long-range interactions enabled by the Lévy index
α = 0.9.
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4.2. Effects of a Larger Domain

In this section, we focus on the dynamics of standing plane waves in the focusing
NLS when the domain length L increases. Here, we use γ = −1 and L = 10π, instead of
L = 5π used in the previous subsection. By formula (15), more unstable modes appear as
the domain size increases. Specifically, in this case we find that there exist three unstable
pairs (i.e., l = ±1,±2,±3) for any α ∈ [1.36, 2]. Their interaction with one another can
result in an emergence of more than one pulse; this expectation is indeed borne out by our
numerical simulations, reported in Figure 8.

Figure 8. Dynamics of unstable standing plane waves in the focusing NLS with γ = −1 and L = 10π.

The field dynamics in the classical NLS (α = 2) appears to be regular. This is likely
the consequence of this equation’s integrability and the presence of only a small number
of unstable modes, as the computational domain is still relatively short. As α decreases,
the evolution of the initially emerged “humps” in the field (around t = 100) becomes
more an more chaotic. This may be explained by the fact that in nonintegrable systems,
pulse interaction is usually accompanied by energy transfer from a smaller to a larger
pulse (see, e.g., in [33]). Eventually, such repeated interactions lead to formation of a single
dominant pulse propagating in a “sea” of small-amplitude dispersive waves. Another
feature, most evident from the lower panels of Figure 8, is that a spatially symmetric initial
condition results in the formation of a moving pulse (i.e., an asymmetric one). This can
be explained by the fact that since the linearly unstable modes, which grow initially, arise
from a background noise due to the computer round-off error and thus have different
amplitudes (i.e., are asymmetric).

For α ≤ 1, as in the case of the shorter domain, the solution eventually collapses as
long as linearly unstable modes exist.

4.3. Effects of Nonzero Group Velocity (7) of the Plane Wave

The analysis in Theorem 1 shows that the traveling (λk 6= 0) plane waves in the
defocusing NLS are always stable if the fractional power α ∈ [1, 2], which is confirmed by
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our numerical simulations. Therefore, we will focus our following study on the traveling
plane wave in the focusing NLS with α ∈ (0, 2] or in the defocusing NLS with α ∈ (0, 1).

Figure 9 shows the time evolution of |u(x, t)| for three representative values of α in
the focusing NLS when α > 1, where λk = 2π/L (i.e., k = 1) in the initial condition (39).
Equation (13) predicts that there is one pair of unstable modes at l = ±1 for α = 2 and 1.9.
Correspondingly, the instability develops into a single soliton-like pulse that moves over a
nonzero background.

Figure 9. Dynamics of the unstable traveling plane wave solution in the focusing NLS with γ = −1 and L = 5π, where
λk = 2π/L in the initial state (39).

In the classical NLS, the reappearance of plane wave solution is observed, and the
frequency of this recurrence is almost the same as that observed in Figure 4 for standing
plane waves. Similar to the observations in Figure 4, a small decrease of α from the classical
value α = 2 leads to a more frequent appearance of the pulse out of the quiescent state.
While for α = 1.3, two unstable pairs occur at l = ±1,±2, and the behavior of the solution
becomes more chaotic due to a nonlinear interaction of these modes (initially) and others
excited by them (eventually).

Our simulations show that traveling plane waves in the focusing NLS with α ∈ (0, 1]
also collapse, but the occurrence of collapse is progressively delayed by the greater values
of λk (with all other parameters being fixed). Table 1 shows the collapse time in the focusing
cases, where the collapse time tcol is defined as the instance where the magnitude of the
Fourier component at the edge of the computational spectral window reaches 10−5. While
this number is, of course, chosen arbitrarily, replacing it with, say, 10−3 or 10−7 would cause
only an insignificant change in the numbers reported in Table 1 and would not change
the trends observed. This is because, as earlier for the case of the standing plane wave,
collapse in the x-space corresponds to the continuing broadening of the solution’s Fourier
spectrum. Once this spectrum increases by several orders of magnitude at the edges of
the computational spectral window, the solution can no longer be considered valid. Of
course, we verified that doubling the width of the computational spectral window would
not prevent the solution’s spectrum from continuing to broaden; therefore, doubling that
width only insignificantly affected the collapse times.

Table 1. Collapse time tcol of traveling plane waves in the focusing NLS with γ = −1 and L = 5π,
rounded to the nearest 5 units.

α 0.9 0.8 0.7 0.6 0.5

k = 1 125 120 110 105 80
k = 5 290 255 245 205 85

k = 20 >500 355 285 240 215

We find that for a given λk, collapse of solution appears earlier for a smaller α. This
is the opposite of the situation with the standing wave’s collapse and is explained by the
magnitude of the modulational instability growth rates in the two cases. Indeed, for the
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standing wave, this rate decreases with decreasing α (see Figure 2) and disappears for
some small enough α (see the discussion in Section 4.1), it retains its value for a traveling
wave as α decreases (see Figure 3). On the other hand, for a given α, the collapse is delayed
by increasing λk. We hypothesize that this may occur because for a larger λk, unstable
modes µl appear at larger |l| (see Figure 3); a possible causal link is discussed at the end of
next paragraph.

Snapshots of the solution and its spectrum evolving towards collapse are shown in
Figure 10a,b.
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Figure 10. Same as Figure 7, but for λk = 5 · (2π/L). At all simulated times before the collapse, the
magnitude of the Fourier spectrum at the edge of the computational spectral window is on the order
of 10−12. The fact that in panel (a) the “hump” at t = 286 and t = 289 appears at approximately the
same location is a coincidence; this pulse moves around the computational window.

The last snapshot is taken within 0.2 time unit before the collapse occurs. A few
observations follow from this figure. First, similar to Figure 7b, the spectrum has a cusp at
the top, indicating some long-range “order” present in the solution, in agreement with the
presence of long-range interactions due to the fractional Laplacian with a low value of α.
Second, the following scenario of collapse can be deduced. The initial small corrugation
grows to a finite size and develops a so-called dispersive wave region, seen as faster
oscillations on the right side of each of the periods of the sinusoid for t = 156. Next, due
to these faster oscillations moving through the slower corrugation, there form “humps”
with slightly different amplitudes (t = 278). Due to their interaction with one another,
one dominant “hump” forms (t = 286). This is similar to the behavior observed in other
non-integrable systems [33], where the dominant pulse “sucks in” the energy from the
ambient field and smaller pulses via collisions with them. It is this dominant pulse that
subsequently undergoes collapse. Finally, this scenario explains the reason behind the
delay of the collapse caused by a nonzero λk of the initial wave. Apparently, collapse
requires that a certain “amount” of the field be concentrated near a given location. As long
as there is a corrugation with peaks of the (approximate) sinusoid of similar amplitude,
collapse cannot form. However, as soon as “enough” energy has been absorbed by the
dominant pulse, collapse becomes possible. The larger λk, the smaller the period of the
corrugation, and thus the smaller the energy within each one of its periods, and the longer
it takes for a sufficient amount of energy to amass near a given location to begin the onset
of collapse.

Two more remarks are in order. First, we stress that this ability of the smaller period
of the initial corrugation to delay the onset of collapse was stated for the condition that α
is fixed. Indeed, as one takes α so small that the results of Section 2 (see Figure 2) predict
a wide band of modulationally unstable modes (e.g., for α = 0.15), the corrugation at the
initial stage of the evolution is quite irregular (due to many modes growing at a similar rate).
Yet, the fact that α is smaller, and hence the dispersion term (−∆)α/2 has a significantly
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longer range, acts to overcome the effect of this irregularity and promotes collapse; the
latter is found to occur significantly earlier than for α = 0.9.

Second, while the smaller period of the initial corrugation can only delay, but not
arrest, collapse, a recent study [34] has shown that a trapping potential can arrest it. This
is consistent with the fact that collapse is caused by the interaction of the field over a
sufficiently large range, and a suitable trapping potential is able to essentially truncate this
range by localizing the field.

To conclude this subsection, we briefly comment on the defocusing NLS with α ∈ (0, 1).
In this case, although the traveling plane waves are also unstable, their dynamics are
substantially different from those in the focusing case. No collapse of solution is observed,
and the evolution of the solution is qualitatively similar to that in the focusing NLS with
α > 1, shown in Figure 9.

5. Conclusions

In this paper, we investigated the stability and dynamics of the plane wave solutions
of the fractional NLS from both analytical and numerical perspectives. The comparison
between the classical and fractional NLS were made to understand the role of long-range
dispersion in the fractional NLS.

First, in Section 2, we showed that modulational stability of the plane wave solutions
to small perturbations can be significantly different in the fractional NLS (1) compared
to its classical counterpart when the Lévy index α ∈ (0, 1). In the defocusing (γ > 0)
NLS, the standing plane wave solution (i.e., λk = 0) is always stable for any α ∈ (0, 2]. In
contrast, the traveling plane wave solution (i.e., λk 6= 0) is stable only for α ∈ [1, 2]. In the
focusing (γ < 0) NLS, the plane wave solution can be linearly unstable for any α and λk.
Furthermore, unstable modes occur at low-frequency region for α ∈ [1, 2], but they appear
at relatively high-frequency region for α ∈ (0, 1), which implies that the dynamics of the
plane wave solution (before they collapse) for α ∈ (0, 1) could be more chaotic.

Second, in Section 3, we studied stability of the split-step Fourier spectral (SSFS)
method in simulating the dynamics of the plane wave solution of the fractional NLS. This is
essential in order to guarantee that the numerical solution does not suffer a blow-up due to
purely numerical artifacts; then, one can ascertain that, if the solution undergoes collapse, it
reflects the true behavior of the analytical solution. We obtained an expression for the time
step threshold below which numerical instability does not occur. This threshold depends
on both the parameter α, of the NLS, and λk, of the simulated plane wave. In particular,
for smaller α, this threshold can be quite large, and then the time step should be chosen to
satisfy the requirement of accuracy, rather than stability, of the numerical method.

Third, in Section 4, we studied the nonlinear stage of the plane wave instability by
directly simulating the NLS. For the initial condition being a perturbed standing plane wave
in the focusing NLS, we found that the perturbation generically develops into a localized
pulse on a nonzero background; the lower the Lévy index α > 1, the more localized the
pulse. In the Fourier space this corresponds to of a significant widening of the solution
spectrum, which expands well beyond the band of modulationally unstable modes found
by the linear stability analysis. For α > 1, the pulse undergoes “breathing”, whereby
it narrows and broadens intermittently. For α ≤ 1, the pulse localization (in x-space)
eventually leads to its collapse, in agreement with findings in [14,28].

We also found that the increase of the group velocity of the plane wave (so that the
latter is traveling as opposed to standing) in the focusing NLS delays the formation of a
localized pulse (or pulses), for a given fractional index < 1α ≤ 2, and delays the onset of
collapse, for α < 1. To our knowledge, this has not been reported before. We also presented
a hypothesis as to why this delay could occur. In the defocusing case, even though traveling
plane waves are found to be linearly unstable for α < 1, that instability does not not lead to
collapse of the solution.
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Appendix A. Derivation of Theorem 3

In the following, we will provide a detailed derivation for the numerical stability
condition (37) in Theorem 3. First, we define the quantity φ such that

cos φ =
1√

1 + γ2|a|4τ2
, sin φ =

−γ|a|2τ√
1 + γ2|a|4τ2

.

Due to the assumption (35), one has

φ = −γ|a|2τ +O
(
(γ|a|2τ)3 ). (A1)

Then we can rewrite the numerical instability condition in (36) as

cos(θl − φ) < − cos φ, (A2)

which can be satisfied at θl ≈ nπ, for integer |n| ≥ 1. Here, we only consider two
possibilities: θl ≈ π or −π, as the others (i.e., θl ≈ nπ with |n| > 1) will yield τ that is
larger than the stability threshold.

The derivation of stability condition is slightly different for focusing and defocusing
NLS. Below, we will present a detailed derivation for the focusing NLS and will briefly
comment on the situation with the defocusing case at the end.

The two possibilities: θl ≈ π and θl ≈ −π, need to be considered separately.

(i) For θl ≈ π, the condition (A2) implies (recall that γ < 0 and thus φ > 0):

π < θl < π + 2φ. (A3)

For α > 1, the situation is illustrated by the solid curve in Figure A1a, which shows
that the maximum value θl,max occurs at the edges of the spectral regions (30). Taking
then l at the edge of Smain, so that |µl | = µmax − λk (see Figure A1a), yields θl,max =
θl(µmax − λk). Using (33) and substituting the result into the left inequality in (A3),
one obtains the first line of the stability condition (37) with the first argument of the
“max” operator. The second argument of “max” comes into play when one considers
the case α < 1, where, as illustrated by the dashed line in Figure A1a, θl,max occurs in
the middle of the aliased region: θl,max = θl(µmin + λk).

(ii) For θl ≈ −π, the condition (A2) implies

− π < θl < −π + 2φ. (A4)

Note that the condition (A4) can be satisfied only when α < 1 and λk 6= 0. In other
words, the stability condition of the SSFS method in simulating the standing plane wave
is always given by (A3). For α < 1 and λk 6= 0, the minimum value θl,min is attained
for µl = ±λk rather than for µl = 0 as for α > 1; see the dashed line in Figure A1a. It
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will be the condition (A4) rather than (A3) that will set the stability threshold when
|θl, min| ≥ |θl, max|, or equivalently, |θl(±λk)| ≥ |θl(µmax− λk)|. Using (33), this yields

2− 2α−1 ≥
(
(1− r)/r

)α. (A5)

The critical value αcr defined in Theorem 3 follows from (A5) with the equal sign and
is plotted in Figure A1b.
For α < αcr, substituting θl,min into the right inequality of (A4) leads to the stabil-
ity condition

τ <
2(π − 2φ)

2λα
k − (2λk)α

. (A6)

By assumption (35), the value of 2φ is negligible compared to π, and thus one obtains
the second line of stability condition (37). Note that if condition (A6) is violated,
numerical instability will occur at |µl | ≈ λk, or, equivalently, for µk ≈ 0, 2λk. There-
fore, it will more readily contaminate the solution than an instability occurring for
|µl | ≈ µmax, considered previously. However, in practice such an instability can occur
only for rather large time steps, which should be avoided based on the requirement
of accuracy rather than stability of the numerical method.

µ
m

 / µ
max

-1 -0.5 0 0.5 1

θ l /
 π

-0.5

0

0.5

1

main region

aliased
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α=0.6
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6

k
 / 7

max

0
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0.4

0.6

0.8

1

,
cr

(a) (b)

Figure A1. (a) Illustration of the main and aliased regions for γ = −1, λk/µmax = 0.25, where θl
is defined in (33) with τ exceeding the instability threshold (37) by 10%. Note that µm ≡ µl + λk,
as noted in Section 3.2. For smaller ratios λk/µmax the relative size of the aliased region is smaller.
(b) Relative difference |θl1=k − θl1=0|/(|θl1=k + θl1=0|/2) in the aliased region.

In the defocusing (γ > 0) case, we will only comment the difference in the analysis for
θl ≈ π. Following a similar analysis that led to condition (A3) in the main spectral region,
we obtain the following condition of numerical instability:

π + 2φ < θl < π, (A7)

where we recall that φ, given by (A1), is now negative. The relative effect caused by the
φ-term in (A7) is on the order O(|γ||a|2) and thus, by assumption (35), can be neglected.
In this approximation, the numerical stability condition of the SSFS method is still given
by (37).
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