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• Equations of motion are obtained for the fractional Schrödinger equation.
• A split-step Fourier spectral method is proposed to solve the fractional NLS.
• Solution behaviors of the fractional and standard NLS are considerably different.
• The fractional Laplacian causes the decoherence of solutions in fractional NLS.
• Local nonlinear interactions can reduce or delay the emergence of decoherence.
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a b s t r a c t

We study the dynamics of the Schrödinger equation with a fractional Laplacian (−∆)α , and the
decoherence of the solution is observed. Analytically, we obtain equations of motion for the expected
position and momentum in the fractional Schödinger equation, equations that are the fractional
counterpart of the well-known Newtonian equations of motion for the standard (α = 1) Schrödinger
equation. Numerically, we propose an explicit, effective numerical method for solving the time-
dependent fractional nonlinear Schrödinger equation—a method that has high order spatial accuracy,
requires little memory, and has low computational cost. We apply our method to study the dynamics
of fractional Schrödinger equation and find that the nonlocal interactions from the fractional Laplacian
introduce decoherence into the solution. The local nonlinear interactions can however reduce or delay
the emergence of decoherence. Moreover, we find that the solution of the standard NLS behaves more
like a particle, but the solution of the fractional NLS behaves more like a wave with interference effects.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Dispersive equations with nonlocal operators like the fractional
Laplacian are of great interest: fractional Schrödinger equations
arise in physical systemswhere particles interact with one another
over long distances [1–4], especially in models of charge transport
in large-scale organic polymers such as DNA [5]. A special case,
the square root of the Laplacian, can be viewed as a model for
pseudo-relativistic Boson stars [6,7]. These fractional Schrödinger
equations have been studied in the physics literature [1,5], with
heuristic arguments justifying the derivation of these nonlocal
continuum dynamics from the underlying biophysics, which is
understood to be modeled by a discrete nonlinear Schrödinger
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equation (NLS),with interactions (e.g., betweendifferent base pairs
in a strand of DNA) that decay like inverse power laws. Recently,
this heuristic derivation has been rigorously justified for classes
of fractional NLS equations, that they arise from microscopic (or
properly speaking, mesoscopic) lattice systems with long-range
interactions when passing to the continuum limit [8].

We consider the dimensionless fractional NLS equation
[2,9,10]:

i
∂ψ(x, t)
∂t

=


1
2
(−∆)α + V (x)+ β|ψ(x, t)|2


ψ(x, t),

x ∈ Rd, t > 0, (1.1)

ψ(x, 0) = ψ0(x), x ∈ Rd, (1.2)

where ψ(x, t) is a complex-valued wave function of spatial coor-
dinate vector x ∈ Rd (d = 1, 2, or 3) and time t ≥ 0. The constant
β ∈ R describes the strength of local interactions, and the inter-
actions are repulsive or defocusing (resp. attractive or focusing) if
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β > 0 (resp. β < 0). The real-valued function V (x) represents an
external trapping potential. In this paper, we consider a harmonic
potential of the form: V (x) =

1
2x

TΛx; the diagonal matrixΛ = γ 2
x

if d = 1,Λ = diag(γ 2
x , γ

2
y ) if d = 2, andΛ = diag(γ 2

x , γ
2
y , γ

2
z ) if

d = 3, with γx, γy and γz the dimensionless trapping frequencies
in x-, y-, and z-direction, respectively. For α > 0, the fractional
Laplacian (−∆)α is defined by [11,12]

(−∆)αψ(x, t) := F −1 
|ξ|2αF [ψ]


, x ∈ Rd, (1.3)

where F defines the Fourier transform, i.e.,

F [ψ](ξ, t) =


Rd
ψ(x, t)e−iξ·xdx,

and F −1 represents the inverse Fourier transform. If α = 1,
(1.1) becomes the standard (non-fractional) NLS equation, also
known as the Gross–Pitaevskii equation (GPE) in the literature of
Bose–Einstein condensation [13–15]. The case α = 1/2 is in-
teresting because it corresponds to the Hilbert-NLS and is chal-
lenging because the dispersion relation ω(k) = −|k| is like the
water wave dispersion. In this paper, we are interested in the case
1/2 < α ≤ 1, with dispersion relationω(k) = −|k|2α between the
wave and Schrödinger cases, and will leave the case of α = 1/2 for
future study.

The general fractional NLS (1.1) has some conserved quantities
for t ≥ 0: the L2-norm, ormass of the wave function, whichwewill
take to be normalized,

∥ψ(·, t)∥2
:=


Rd

|ψ(x, t)|2dx =


Rd

|ψ(x, 0)|2dx = 1, (1.4)

and the total energy,

E(t) :=


Rd


1
2

|∇
αψ |

2
+ V (x)|ψ |

2
+
β

2
|ψ |

4

dx = E(0), (1.5)

where we write the operator ∇
s

= −(−∆)s/2, for s > 0. These
conserved quantities can be used as benchmarks in analysis and
simulation of the fractional NLS.

Existence and uniqueness of ground states of the elliptic
problem associated with the fractional NLS have been studied
in one dimension [16] and higher dimensions in the radial
case [17]. By contrast, the time-evolution of initial states for the
fractional NLS is not well understood qualitatively, though there
are abstract well-posedness results in the literature [8,18,19] and
finite-time blow-up results for closely related equations [7,20].
Recently, soliton dynamics have been studied for the fractional
NLS in the semi-classical limit, and found to concentrate along
a trajectory determined by the Newtonian type equation [9].
However, the fractional counterpart of theNLS equations ofmotion
for expected position and momentum were thought hard to
obtain [9, Remark 4.7], equations of motion that we will present
in Theorem 2.1. Additionally, numerical investigations on the
fractional NLS dynamics in the literature remain scant.

In this paper,we analytically andnumerically study the solution
dynamics of the fractional NLS in comparison with the standard
NLS, so as to understand the nonlocal effects of the fractional
Laplacian on the dynamics. We study solutions of the fractional
linear and nonlinear Schrödinger equations in the presence of an
external harmonic potential, and we observe conditions under
which there is a loss of the ground state profile when it evolves
additional peak(s), and conditions underwhich there is emergence
of high frequencies. The loss of the ground state profile in the
fractional NLS does not appear to arise from the nonlinearity, but
from the nonlocal interactions of the fractional Laplacian, possibly
from its interaction with the potential, especially if the initial
state is not symmetric with respect to the center of the external
potential. In fact, our simulations suggest that the nonlinearity
helps to maintain the shape of the ground state profile, delaying
or reducing the leakage to high frequencies, albeit with some
fluctuations. Our main contributions in this paper include:
(i) We obtain the equations of motion for expected positions

and momentum for the fractional Schrödinger equation,
extending the results in the literature [9]. We show that
the equations of motion for the fractional NLS do not form
a closed system, and they also depend on the nonlinearity,
which is different from the well-known Newtonian equations
of motion for the standard NLS.

(ii) We propose a time-splitting Fourier pseudo-spectral method
for simulating the dynamics of fractional NLS. It has the
spectral-order accuracy in space and the second-order
accuracy in time. One main merit of our method is that it
requires low memory and computational costs, independent
of the fractional power α.

(iii) We numerically study the dynamics of the fractional
Schrödinger equationwith a harmonic potential in both linear
and nonlinear cases, examine the loss of the ground state pro-
file that is associated to the nonlocal interactions of the frac-
tional Laplacian rather than the nonlinear term.

2. Equations of motion for expected position and momentum

For the standard (non-fractional) Schrödinger equation, the
Ehrenfest theorem gives Newtonian equations of motion for the
expectations of position and momentum observables, equations
that are closed and have periodic solutions [21]. For example,
in the traditional nonlinear Schrödinger equation, Ehrenfest-type
results have been proved [22], and in the semiclassical limit of
the nonlinear Schrödinger equation, the center of mass (expected
position) is also known to converge to the solution of a Newtonian
equation [23,24]. However, the fractional counterpart of the NLS
equations of motion for expected position and momentum still
remains open (see [9, Remark 4.7]). In this section, we obtain the
analogous equations for the fractional Schrödinger equation and
show that they are not closed and have a fractional momentum
differing from the usual momentum.

The center of mass ⟨X⟩ is the expected value of the position
operator X[ψ(x, t)] := xψ(x, t), which can be written using the
Hilbert space inner product ⟨·, ·⟩ or explicitly as an integral:

⟨X⟩ := ⟨ψ, Xψ⟩ =


Rd

x|ψ(x, t)|2dx, t ≥ 0. (2.1)

Following [2], we define the fractional momentum operator:

Pα := −iα∇
2α−1

= α|P2
|
α−1P, for

1
2
< α ≤ 1,

where P = −i∇ is the usual momentum operator. The operator
∇

2α−k, for positive integer k, can be defined by composing
∇

2α−k
:= ∇

2α
∇

−k, where the kth order integral operator ∇
−k

is defined, for instance, through Cauchy’s formula for iterated
integrals in one dimension (here a is arbitrary and fixed):

∇
−kf (x) = f (−k)(x) =

1
(k − 1)!

 x

a
(x − y)k−1f (y)dy.

It is easy to see that the Fourier multiplier of the fractional
momentum operator Pα is iα ξ |ξ |2α−2. Then the expected
fractional momentum is defined as

⟨Pα⟩ := ⟨ψ, Pαψ⟩ = −iα


Rd
ψ∗

∇
2α−1ψ dx,

t ≥ 0, for
1
2
< α ≤ 1, (2.2)

whereψ∗ represents the complex conjugate of the functionψ . The
following theorem establishes the time evolution of the expected
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position and fractional momentum (addressing the open problem
in [9, p. 20]).

Theorem 2.1. For a solutionψ = ψ(x, t) of the fractional NLS (1.1)
with harmonic potential and α ∈ ( 12 , 1], we have the following equa-
tions of motion for t > 0:

d
dt

⟨X⟩ = ⟨Pα⟩, (2.3)

d
dt

⟨Pα⟩ = ⟨Wα⟩, (2.4)

where the quantity ⟨Wα⟩ is the expectation of an operator and can be
defined by:

⟨Wα⟩ := α(2α − 1)⟨(−∇V )|P2
|
α−1

⟩

−α(α − 1)(2α − 1)

(∇2V )∇2α−3

−αβ

j≥1


2α − 1

j

 
ψ,


∇

2α−1−jψ
 

∇
j(|ψ |

2)

. (2.5)

Proof. The time derivative of the center of mass can be computed:

d
dt

⟨X⟩ = ⟨ψt , xψ⟩ + ⟨ψ, xψt⟩

=


−

i
2
(−∆)αψ − iVψ − iβ|ψ |

2ψ, xψ


+


ψ,−

i
2
x(−∆)αψ − ixVψ − iβx|ψ |

2ψ


=

i
2
⟨ψ, (−∆)αxψ − x(−∆)αψ⟩.

Then using the fractional version of the Leibniz rule [12], this
becomes:

d
dt

⟨X⟩ =
i
2


ψ,−

∞
j=0


2α
j


(∇2α−jψ)(∇ jx)+ x∇2αψ


= ⟨ψ,−iα∇

2α−1ψ⟩ = ⟨Pα⟩.

To compute the time derivative of the expected fractional
momentum, we split it into three terms, one for each of the three
terms in the fractional NLS (1.1): kinetic, external potential, and
nonlinear.

d
dt

⟨Pα⟩ = ⟨ψt , α|P2
|
α−1Pψ⟩ + ⟨ψ, α|P2

|
α−1Pψt⟩

= ⟨iψt , α|P2
|
α−1

∇ψ⟩ + ⟨ψ, α|P2
|
α−1(−∇)iψt⟩

= I + II + III, (2.6)

where the terms I, II , and III are defined using the fractional NLS
(1.1) by:

I =

1
2
(−∆)αψ, α|P2

|
α−1

∇ψ


+


ψ, α|P2

|
α−1(−∇)

1
2
(−∆)αψ


,

II =

Vψ, α|P2

|
α−1

∇ψ

+


ψ, α|P2

|
α−1(−∇)(Vψ)


,

III =

β|ψ |

2ψ, α|P2
|
α−1

∇ψ

+


ψ, α|P2

|
α−1(−∇)(β|ψ |

2ψ)

.

Term I vanishes, because it comes from the kinetic part of the
Hamiltonian, commutativity of the differential operators, and self-
adjointness of the fractional Laplacian:

I =


1
2
(−∆)αψ, α|P2

|
α−1

∇ψ


+


ψ, α|P2

|
α−1(−∇)

1
2
(−∆)αψ


=


1
2
(−∆)αψ, α|P2

|
α−1

∇ψ


+


1
2
(−∆)αψ, α|P2

|
α−1(−∇)ψ


= 0.

Term II comes from the external potential, and we rewrite it using
the commutator [A, B] = AB − BA:

II = ⟨Vψ, α|P2
|
α−1

∇ψ⟩ + ⟨ψ, α|P2
|
α−1(−∇)(Vψ)⟩

= ⟨ψ, Vα|P2
|
α−1

∇ψ⟩ − ⟨ψ, α|P2
|
α−1

∇(Vψ)⟩
= ⟨ψ, [V , α|P2

|
α−1

∇]ψ⟩.

Then by the fractional Leibniz rule on the second term in the
commutator, the j = 0 term canceling with the first term in the
commutator, and V being harmonic, only the j = 1 and j = 2
terms survive:

II =

ψ, Vα|P2

|
α−1

∇ψ


−


ψ, α

∞
j=0


2α − 1

j

 
∇

2α−1−jψ

(∇ jV )



=


ψ, α


2α − 1

1


(∇2α−2ψ)(−∇V )

−α


2α − 1

2


(∇2α−3ψ)(∇2V )


= α(2α − 1)⟨ψ, (−∇V )|P2

|
α−1ψ⟩

−α(α − 1)(2α − 1)

ψ, (∇2V )∇2α−3ψ


.

This fractional Leibniz rule corresponds to the choice of the
Riesz fractional derivative in the beginning; a different choice of
fractional derivative or pseudo-differential calculus would result
in a different Leibniz rule with lower-order correction terms.

The last term III in the derivative of themomentum (2.6) comes
from the nonlinearity:

III = ⟨β|ψ |
2ψ, α|P2

|
α−1

∇ψ⟩ + ⟨ψ, α|P2
|
α−1(−∇)(β|ψ |

2ψ)⟩

= αβ⟨ψ,

|ψ |

2, |P2
|
α−1

∇

ψ⟩.

The second term of the commutator can be expanded using the
fractional Leibniz formula, and the j = 0 term cancels with the
first term of the commutator, giving:

III = −αβ

j≥1


2α − 1

j

 
ψ,


∇

2α−1−jψ
 

∇
j(|ψ |

2)

.

Putting the three terms together, we get the equation of motion
(2.4) and (2.5). �

Remark 2.1. The threshold α = 1/2 is an important one in the
study of symmetric stable processeswhose infinitesimal generator
is the fractional Laplacian: for instance, if α > 1/2 the mean of the
stable distribution is well-defined (equal to the location parameter
µ), but if α < 1/2 themean of the stable distribution is undefined.
This threshold is reflected in the signs of the coefficients in ⟨Wα⟩,
which are nonnegative if α ∈ (1/2, 1].

Remark 2.2. If V (x) is nonzero and not harmonic, then there may
be an infinite series in ⟨Wα⟩. But, if there is no external potential,
i.e., V (x) = 0, ⟨Wα⟩ has only the last term III in it, i.e.,

⟨Wα⟩ = −αβ

j≥1


2α − 1

j

 
ψ,


∇

2α−1−jψ
 

∇
j(|ψ |

2)

.
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Fig. 1. Oscillation of ⟨X⟩ and ⟨P⟩ in the 1D standard (α = 1) Schrödinger equation with harmonic potential V (x) =
1
2 x

2 , obtained by numerically simulating (1.1) with (4.1).
Fig. 2. Oscillation and decay of the time evolution of ⟨X⟩ and ⟨Pα⟩ in the 1D fractional Schrödinger equation (1.1) with harmonic potential V (x) =
1
2 x

2 , obtained by
numerically simulating (1.1) with the initial state (4.1). There is complexity in the solutions that is not apparent in this figure, complexity including decoherence and
emergence of high frequencies (discussed in Section 4) even in the linear cases (left).
Additionally, if there is no nonlinearity, then ⟨Wα⟩ = 0 as in the
non-fractional case.

Remark 2.3. If α = 1, then integration by parts shows that term
III in (2.6) is zero, and the operator is simplyWα = −∇V = −Λx,
a multiplication operator. Thus the equations of motion (2.3)–(2.4)
reduce to:

d
dt

⟨X⟩ = ⟨P⟩, (2.7)

d
dt

⟨P⟩ = −Λ⟨X⟩, (2.8)

where Λ is the diagonal matrix of trapping frequencies of a
harmonic potential.

Remark 2.3 shows that when α = 1, the equations of motion
(2.7)–(2.8) form a closed system, independent of the nonlinear
parameter β , and their solution is periodic with period depending
on the trapping frequency of the harmonic potential. By contrast,
Theorem 2.1 shows that the equations of motion in the fractional
(α < 1) case are not closed, which is a difference between the
fractional and standard NLS dynamics. In the following, we present
a numerical illustration of this difference.

Fig. 1 displays the time evolution of ⟨X⟩ and ⟨P⟩ in the one-
dimensional (1D) standard (α = 1) Schrödinger equation (1.1)
with harmonic potential V (x) =

1
2x

2, obtained by numerically
simulating (1.1) with the initial condition ψ0(x) as given in (4.1).
It shows that both ⟨X⟩ and ⟨P⟩ oscillate periodically with period
T = 2π , and their evolution is independent of β and ⟨X⟩(0). This
observation is consistent with our analytical results in Remark 2.3
and those reported in the literature [14,15,25–27].

By contrast, the dynamics of ⟨X⟩ and ⟨Pα⟩ for the fractional
Schrödinger equation aremore complicated (see Fig. 2), depending
not only on α but also on ⟨X⟩(0) and β . Decay of ⟨X⟩ and ⟨Pα⟩ is
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observed along with oscillation, especially when β = 0; including
the nonlinear interactions can reduce the decay of ⟨X⟩ and ⟨Pα⟩
during the dynamics. However, the time evolution of ⟨X⟩ and ⟨Pα⟩
fails to show the decoherence and emergence of high frequencies
in the dynamics of fractional NLS; seemore discussion in Section 4.

3. Time-splitting Fourier pseudo-spectral method

There have been numerous studies on fractional differential
equations, and various numerical methods have been proposed
to solve fractional-in-space diffusion equations; see [28–33] and
references therein. Most of these methods are finite difference
or finite element methods, which usually have low-order spatial
accuracy, and at each time step, they result in solving linear
systems of the form Au = b. However, due to its nonlocality, the
discretization of the fractional Laplacian (−∆)α yields a full matrix
A, and thus solving the linear system Au = b could be costly.
Additionally, the storage of A could be challenging, especially in
high spatial dimensions (e.g., d = 2 or 3). Recently, a Fourier
spectralmethodwas presented in [34] to solve the fractional linear
reaction–diffusion equation, and collocation methods based on
little sinc functions were proposed in [35] to compute solutions
of the fractional linear Schrödinger equation. Both of these new
methods have spectral accuracy in space, in contrast to the finite
difference and finite element methods. All the above methods,
however, are for solving linear equations.

For nonlinear equations, Fourier spectral type methods were
proposed in [36–38] to solve the nonlinear dispersive equations,
in which the temporal discretization is realized by the integrating
factor method or the fourth-order Runge–Kutta method. These
methods are conditionally stable, and moreover they are difficult
to be applied to solve the fractional NLS with external trapping
potential. In this paper, we propose a time-splitting Fourier
pseudo-spectral method to solve the time-dependent fractional
NLS (1.1)–(1.2), with the following merits: (i) It has spectral-
order accuracy in space and second-order accuracy in time. In
addition, the temporal accuracy can be easily improved by using
a higher-order splitting method. (ii) The method is explicit and
straightforward to implement, requiring much less memory and
computational costs than finite difference/element methods. (iii)
The generalization of ourmethod for solving one-dimensional (1D)
fractional NLS to higher spatial dimensions is straightforward. (iv)
Our method can be used to solve not only fractional NLS but also
the traditional non-fractional NLS (α = 1).

First, we truncate (1.1)–(1.2) into a sufficiently large bounded
computational domainΩ ∈ Rd, and without loss of generality, we
consider the following problem:

i∂tψ(x, t) = c(−∆)αψ + V (x)ψ + β|ψ |
2σψ,

x ∈ Ω, t > 0, (3.1)

ψ(x, 0) = ψ0(x), x ∈ Ω̄, (3.2)

with constants c > 0 and σ > 0. The fractional NLS in (1.1)
corresponds to choosing c =

1
2 and σ = 1 in (3.1). Here, we

consider periodic boundary conditions for the problem (3.1)–(3.2).
The use of other boundary conditions for the nonlocal (fractional)
equation is a topic that remains to be examined [39,40].

Choose a time step τ > 0 and define a time sequence tn = nτ
for n = 0, 1, . . . . From time t = tn to t = tn+1, we solve (3.1) in
two splitting steps, i.e., solving:

i∂tψ(x, t) = V (x)ψ + β|ψ |
2σψ, (3.3)

i∂tψ(x, t) = c(−∆)αψ. (3.4)

Multiplying (3.3) by ψ∗ and then subtracting it from its complex
conjugate, we obtain ∂t(|ψ(x, t)|2) = 0, which implies that
|ψ(x, t)| is time invariant on [tn, tn+1], i.e., |ψ(x, t)| = |ψ(x, tn)|
for t ∈ [tn, tn+1]. Consequently, for tn ≤ t ≤ tn+1 we can write
(3.3) as

i∂tψ(x, t) =

V (x)+ β|ψ(x, tn)|2σ


ψ(x, t), (3.5)

an equation that is linear in ψ(x, t). Integrating (3.5) in time gives
the solution to (3.3):

ψ(x, t) = ψ(x, tn) e−i(V (x)+β|ψ(x,tn)|2σ )(t−tn), tn ≤ t ≤ tn+1. (3.6)

Due to the definition of the fractional Laplacian in (1.3), it is
natural to use the Fourier pseudo-spectral method for the spatial
discretization of (3.4) [34,41–43]. For simplicity, we present the
discretization of (3.4) in one dimension, though the generalization
to higher dimension is straightforward. Let Ω = (a, b) be the 1D
computational domain and J be a positive even integer. Define the
mesh size h = (b − a)/J and grid points xj = a + jh for 0 ≤ j ≤ J .
We assume the approximate ansatz

ψ(x, t) =

J/2−1
l=−J/2

ψl(t) eiµl(x−a), (3.7)

where ψl(t) represents the lth mode of the Fourier transform of
ψ(x, t), and

µl =
2lπ
b − a

, −
J
2

≤ l ≤
J
2

− 1.

Substituting (3.7) into (3.4) and using the orthogonality of the
Fourier basis functions, we obtain

i
dψl(t)
dt

= c|µl|
2αψl(t), tn ≤ t ≤ tn+1, −

J
2

≤ l ≤
J
2

− 1.

Integrating it in time, we get

ψl(t) = ψl(tn) e−ic|µl|
2α(t−tn),

t ∈ [tn, tn+1], −
J
2

≤ l ≤
J
2

− 1. (3.8)

Combining (3.8) with (3.7) gives the solution to (3.4).
In practice, we use the second-order Strang splitting method

[44] to couple (3.3) and (3.4), i.e., from t = tn to t = tn+1, we
solve

ψ
(1)
j = ψn

j e−iτ [V (xj)+β|ψn
j |

2σ
]/2
,

ψ
(2)
j =

J/2−1
l=−J/2

ψ (1)
l e−icτ |µl|

2α 
eiµl(xj−a), 0 ≤ j ≤ J, n ≥ 0, (3.9)

ψn+1
j = ψ

(2)
j e−iτ [V (xj)+β|ψ

(2)
j |

2σ
]/2
,

whereψn
j denotes the numerical approximation ofψ(xj, tn).When

n = 0, we have

ψ0
j = ψ0(xj), 0 ≤ j ≤ J. (3.10)

For more general discussions on the time-splitting method, we
refer readers to [44,45] and references therein. Our method has
spectral-order accuracy in space and second-order accuracy in
time. It is also explicit, making it easy to implement via the fast
Fourier transform (FFT). Thememory cost isO(J) and the computa-
tional cost per time step isO(J ln J) for 1D cases. In 2D (resp. 3D), the
memory cost isO(JK) (resp.O(JKL)), and the computational cost per
time step is O(JK ln(JK)) (resp. O(JKL ln(JKL))), where K and L rep-
resent the number of intervals in y- and z-direction, respectively.
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Fig. 3. Ground states of the Schrödinger equation (1.1) with harmonic potential V (x) =
1
2 x

2 . (a) β = 0 (where nonlocal effects are significant); (b) β = 10.
Fig. 4. Left: Ground states of Amore et al. [35], where α = γ is twice as large as our α. Right: The exact ground state (4.3) of standard Schrödinger equation which
should correspond to the middle red dashed line in the left panel for α = 2. To be consistent with the notations in [35], the modulus of ground states is represented by
ψ0(x) = |ψg (x)|. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4. Dynamics of the fractional Schrödinger equation

We numerically study the dynamics of the 1D fractional
Schrödinger equation with harmonic potential V (x) = x2/2,
and remarkably, we see decoherence and emergence of high
frequencies in the linear case. We choose the initial condition as
a translation of the ground state ψg :

ψ0(x) = ψg(x − x0), x ∈ R. (4.1)

It can be viewed as a perturbation of the ground state: the larger the
value of x0, the stronger the perturbation. The ground state ψg(x)
is computed numerically with the same parameters α and β used
in the dynamics.

We have verified that our numerical results are invariant as
decreasing the mesh size h and time step τ . Additionally, we make
sure that the mass of the wave function (1.4) and the total energy
(1.5) are conserved in our simulations.

4.1. Ground states

To prepare for the dynamics, we first present the ground states
of the Schrödinger equation. Fig. 3 shows the modulus of the
ground state |ψg(x)| for different values of the parameters α and
β , computed using the numerical methods proposed in [46]. The
nonlocal effect from the fractional Laplacian (−∆)α is significant
when β = 0: the ground states are narrower and taller for smaller
α (see Fig. 3(a)). By contrast, the local nonlinear interactions
dominate when β is large: the ground states are almost the same
for different α (see Fig. 3(b)).

Remark 4.1. In work of Amore et al. [35], collocation methods
based on little sinc functions were introduced to compute the
ground states of the fractional linear Schrödinger equation:

i∂tψ(x, t) = (−∆)γ /2ψ(x, t)+ x2ψ(x, t), x ∈ R;

∥ψ(·, t)∥ = 1.
(4.2)

When γ = 2, (4.2) reduces to the standard linear Schrödinger
equation, and its ground state can be found exactly with constant
θ ∈ R:

ψg(x) =
1
π1/4

e−
x2
2 eiθ , x ∈ R. (4.3)

However, the ground state of the standard Schrödinger equation
in Fig. 1 of the literature [35] (or see our Fig. 4 (left) with α = 2)
is not consistent with the exact solution in (4.3), which may imply
that the numerical method proposed in [35] for computing ground
states is incorrect.

4.2. Decoherent dynamics in linear cases

We numerically study the dynamics of the 1D fractional linear
(β = 0) Schrödinger equation, considering different initial transla-
tions x0 in (4.1), or equivalently by ground state symmetry, differ-
ent initial centers of mass ⟨X⟩(0) = x0. Figs. 5 and 6 show the time
evolution of the solution |ψ(x, t)| for various ⟨X⟩(0) and α = 0.75
or α = 1. We display the results in a small region, although our
computational domain is much larger.

For reference, the non-fractional case with α = 1 appears in
the right panel of Figs. 5 and 6, with the wave function oscillat-
ing around the trap center for t > 0, retaining its initial ground
state profile independent of the initial center ofmass ⟨X⟩(0), show-
ing coherence, consistent with previous results [14,15,25,26,47].
By contrast, for α < 1 in the left panel of Figs. 5 and 6, the dy-
namics of the solution depends crucially on the initial center of
mass ⟨X⟩(0). For relatively small initial center of mass ⟨X⟩(0) as in
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Fig. 5. Time evolution of the solution of the fractional (left) and standard (right) linear Schrödinger equation (1.1) with relatively small shifts of the initial state (4.1).
Decoherence emerges in the fractional linear case once the initial shift is large enough, as in the case of ⟨X⟩(0) = 1.
Fig. 5, the solution oscillates around the trap center, and its shape
changes slightly. For larger ⟨X⟩(0) as in Fig. 6, the solution changes
dramatically during the dynamics, and the initial profile is com-
pletely destroyed after some time. Comparing Figs. 5 and 6, we find
that the larger the initial center ofmass ⟨X⟩(0), the stronger the de-
coherence of the solution.

To further study the decoherence as the solution evolves, we
introduce two quantities: one is

M(t) :=


Rd


|ψg(x − ⟨X⟩(t))| − |ψ(x, t)|

2dx1/2

,

t ≥ 0, (4.4)

where ψg is the ground states as in (4.1), that is, M(t) measures
the difference in shape of the solution at time t from its initial
condition. If the solution at time t retains its initial profile, then
M(t) = 0. The other quantity is the variance

S(t) :=


Rd

[x − ⟨X⟩(t)]2|ψ(x, t)|2dx, t ≥ 0. (4.5)

This measures the spread of the solution around its center of mass,
estimating the square width of thewave function [48]: If the shape
of the solution does not change over time, then S(t) remains a
constant. Fig. 7 displays the time evolution ofM(t) and S(t)− S(0)
for various α and ⟨X⟩(0). For the standard Schrödinger equation
with α = 1, we find M(t) ≡ 0 and S(t) ≡ S(0), for any ⟨X⟩(0),
which implies that the solution retains its initial shape during
the dynamics. If α < 1, the M(t) increases after a short time,
implying that the solution distorts quickly in the fractional cases.
Furthermore, the time evolution of S(t)−S(0) shows that for fixed
α, the larger the initial center of mass ⟨X⟩(0), the stronger the
decoherence, which is consistent with our observations of density
plots in Figs. 5 and 6.

We conjecture that for t ≥ t0 large enough, the paths of both
M(t) and |S(t) − S(0)| are bounded away from zero if ⟨X⟩(0) is
sufficiently large. We find that the solution of the standard NLS
behaves more like a ‘‘particle’’, but the solution of the fractional
NLS behaves more like a wave with effects that might be described
as ‘‘interference’’ arising from the long-range interactions of the
fractional Laplacian. This is the main difference between the
standard and fractional NLS dynamics.

The expected position and momentum observables (⟨X⟩, ⟨Pα⟩)
reflect the decoherence, albeit in a subtle way: For α = 1,
the trajectory of (⟨X⟩, ⟨P⟩) is a circle of radius |⟨X⟩(0)|, which is
consistent with the analytical solution of (2.7)–(2.8). When 1

2 <
α < 1, the dynamics of (⟨X⟩, ⟨Pα⟩) depends on the initial center
of mass ⟨X⟩(0) (see Fig. 8). Note that due to the initial setup in
(4.1), the initial expected momentum ⟨Pα⟩(0) vanishes for any α
and ⟨X⟩(0). There are different regimes of behavior, depending
on the size of |⟨X⟩(0)|. For small initial center of mass |⟨X⟩(0)|,
the trajectory of (⟨X⟩, ⟨Pα⟩) goes towards an elliptic attractor; for
larger |⟨X⟩(0)|, the attractor is smaller, and if |⟨X⟩(0)| is large
enough, the oscillations of these expected values are damped out
over time, and the trajectory spirals towards (0, 0)T .
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Fig. 6. Time evolution of the solution of the fractional (left) and standard (right) linear Schrödinger equation (1.1) with larger shifts of the initial state (4.1). Decoherence is
clear in the fractional case with initial shift ⟨X⟩(0) = 2 (upper left) and high frequencies emerge with larger shift ⟨X⟩(0) = 5 (middle left).
Fig. 7. Time evolution of M(t) (top) and S(t) − S(0) (bottom) for measuring the decoherence in the 1D linear Schrödinger equation. Note that the coherence of the non-
fractional case α = 1 is reflected in the dotted lines that are zeros forM(t) and S(t)− S(0).
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Fig. 8. Trajectory of (⟨X⟩, ⟨Pα⟩) for time t ∈ [0, 200] in the fractional linear Schrödinger equation (1.1) with initial condition (4.1). A red asterisk represents the initial
expectations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Trajectory of (Re(Z), Im(Z)) for time t ∈ [0, 100] in fractional linear Schrödinger equation (1.1) with initial condition (4.1). A red asterisk represents the initial
condition. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In addition, similar to [49,50], we define the center of mass of
thewave functionψ (which could be thought of as the expectation
of a ‘‘complex probability measure’’):

Z(t) :=


R
xψ(x, t)dx, t ≥ 0,

and show the dynamics of (Re(Z), Im(Z)) for various α in Fig. 9.
For the standard NLS with α = 1, the evolution of (Re(Z), Im(Z))
is periodic, implying the recurrence of the initial state during
the dynamics (see Fig. 9 bottom row). In the fractional case,
the dynamics of (Re(Z), Im(Z)) becomes asymmetric around the
origin (see Fig. 9 top and middle rows) and is not periodic, in
contrast with the standard case (see Fig. 9 bottom row). These
results are similar to those observed in [49,50] for the emergence
of chaos in the discrete Schrödinger equation with long-range
interactions. Our results suggest that the decoherence comes from
the long-range interactions due to the fractional Laplacian rather
than the nonlinearity.
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Fig. 10. Time evolution of the solution of the fractional NLS (1.1) with weak nonlinear interactions (i.e., small β). Decoherence is reduced due to local nonlinear interactions.
4.3. Reduced decoherence in nonlinear cases

Westudy the dynamics of 1D fractional NLSwith local (or short-
range) interactions from β ≠ 0 in (1.1). Figs. 10 and 11 show the
time evolution of the solution |ψ(x, t)| for α = 0.75 or α = 0.9.
Here we omit the results for α = 1, as they are similar to those in
Figs. 5 and 6 for linear cases.

For the fractional NLS, the dynamics of the solution depends on
the fractional power α, the nonlinear parameter β , and the initial
center of mass ⟨X⟩(0). For fixed α and β , if |⟨X⟩(0)| is small, the
profile of the solution changes slightly during the dynamics, but
almost no decoherence is observed, especially when β is large (see
Fig. 11 top row). If |⟨X⟩(0)| is large, however, weak decoherence
might appear after some time, depending on the competition
between the local nonlinear interactions and the nonlocal
interactions from fractional Laplacian (−∆)α . For instance, when
α = 0.9 and ⟨X⟩(0) = 5, decoherence emerges around t = 40 if
β = 1, and it remains weak during the dynamics. But for the same
α and initial offset, almost no decoherence is observed until t =

150 if β = 10, implying that strong local nonlinear interactions
might suppress the decoherence especially when α is close to 1.
Comparing the results of α = 0.75 in Fig. 7 and Figs. 5–6, we
find that even weak local nonlinear interactions can significantly
reduce the decoherence of the solution in the fractional NLS
dynamics. For the same β and ⟨X⟩(0), the smaller the power α, the
stronger the nonlocal interactions, the stronger the decoherence.

To further understand the nonlinear effects, the time evolution
ofM(t) is presented in Fig. 12 forβ = 1 and 10.We find that: (i) For
the sameα and |⟨X⟩(0)|, the value ofM(t) decreaseswhen increas-
ing the nonlinear parameterβ , which implies that the local nonlin-
ear interactions prevent the loss of soliton during the dynamics. (ii)
For the same β and |⟨X⟩(0)|, the value of M(t) is generally larger
when the fractional power α is smaller, indicating the change in
the shape of solution is mainly caused by the nonlocal interactions
from the fractional Laplacian (−∆)α .

The dynamics of S(t) − S(0) in Fig. 13 shows the similar
phenomena, where the coherence of the standard NLS (α = 1)
is reflected by S(t) ≡ S(0) for any t ≥ 0. In the fractional case
1
2 < α < 1, S(t)− S(0) oscillates around zero. When α is far from
1
2 , the oscillation of S(t) − S(0) generally reduces as β increases,
which implies that the spread of the solution around its center of
mass decreases with strong local nonlinear interactions. However,
when α is near the lower end of the range ( 12 , 1] and |⟨X⟩(0)| is
larger, the strong local nonlinear interactions could introduce large
fluctuations that increase the spread of solution S(t) (see Fig. 13
bottom right).

Fig. 14 shows the trajectories of (⟨X⟩, ⟨Pα⟩) for α = 0.75, with
the effect of local nonlinear interactions in the fractional NLS. Note
that when α = 1, the trajectory of (⟨X⟩, ⟨P⟩) is a circle of radius
of |⟨X⟩(0)|, independent of nonlinear parameter β . Comparing
Fig. 8 (upper row) and Fig. 14, we find that the local nonlinear
interactions have a strong effect on the dynamics of (⟨X⟩, ⟨Pα⟩),
which prevent the decay of the expected position andmomentum.
For example, when α = 0.75 and ⟨X⟩(0) = 5, the trajectory is
a spiral in the linear case (see Fig. 8 upper right), implying that
⟨X⟩(t) and ⟨Pα⟩(t) decay over time, however, it appears to move
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Fig. 11. Time evolution of the solution of the fractional NLS (1.1) with strong nonlinear interactions (i.e., large β). Decoherence is reduced due to nonlinear interactions.
Fig. 12. Time evolution ofM(t) for studying the decoherence in the 1D NLS.
towards an attractor when β ≠ 0 (see Fig. 14 right column). This
nonlinear effect can be also observed in the time evolution of ⟨X⟩(t)
and ⟨Pα⟩(t) in Fig. 2. Additionally, our extensive simulations show
thatwhenβ is large andα is far from 1
2 , the dynamics of (⟨X⟩, ⟨Pα⟩)

becomes less sensitive to β , and the trajectories of (⟨X⟩, ⟨Pα⟩) are
similar to those in Fig. 14 (lower row).
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Fig. 13. Time evolution of S(t)− S(0) for studying the decoherence in the 1D NLS.
Fig. 14. Trajectory of (⟨X⟩, ⟨Pα⟩) for time t ∈ [0, 100] in the fractional NLS (1.1) with initial condition (4.1). A red asterisk represents the initial expectations. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Trajectories of (Re(Z), Im(Z)) for time t ∈ [0, 100] in the standard NLS (1.1) with initial condition (4.1) represented by a red asterisk. The standard NLS has periodic
trajectories. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In Figs. 15 and 16, we present the dynamics of (Re(Z), Im(Z))
for various α and β , which shows that including local nonlinear
interactions significantly affects the dynamics of the solution.
When α = 1, the phase diagrams (Re(Z), Im(Z)) in Fig. 15 are
completely different from the linear case in Fig. 9, even though
the trajectories of (⟨X⟩, ⟨P⟩) are the same for both linear and
nonlinear cases. In the fractional cases with 1

2 < α < 1, the
dynamics of (Re(Z), Im(Z)) again reflect the effects of nonlinear
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Fig. 16. Trajectory of (Re(Z), Im(Z)) for time t ∈ [0, 100] in the fractional NLS (1.1) with initial condition (4.1) represented by a red asterisk. The stronger nonlinearity
(bottom row) gives trajectories closer to the periodic trajectories of the traditional NLS in Fig. 15. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
interactions. When β is large, the time evolution of (Re(Z), Im(Z))
in the fractional cases become closer to that in the non-fractional
case (see the lower right diagrams in Fig. 16, which are more like
those in Fig. 15). The stronger nonlinearity appears to reduce the
decoherence effect of the fractional Laplacian (−∆)α .

Remark 4.2. In Sections 4.2 and 4.3, the initial condition ψ0(x)
is chosen as a translation of the ground state ψg in (4.1), and
decoherence is observed in dynamics of fractional Schrödinger
equation. In fact, similar decoherence structure is also observed
with other initial profiles. Hence, we conclude that the emergence
of the decoherence is dependent on the fractional Laplacian
(−∆)α , but largely independent of the initial profile ψg .

5. Discussion and conclusion

We studied the solution dynamics of the fractional Schödinger
equation with a harmonic potential. First, we obtained Newtonian
equations of motion for the expectations of the position and
momentum observables in the fractional Schrödinger equation,
solving an open problem in the study of soliton dynamics [9].
These equations are not closed in the fractional case, unlike the
corresponding equations for the standard Schrödinger equations.

Second, we numerically simulated the dynamics of the frac-
tional Schrödinger equation with a soliton as the initial condition.
In the standard Schrödinger dynamics, no decoherence was ob-
served, consistent with results in the literature. The decoherence
emerges in the fractional Schrödinger dynamics, however, it re-
mainsweak if the initial center ofmass (expected position) is small.
If the initial center of mass is large, the decoherence could become
very strongwhen the fractional power is small. Our results are con-
sistentwith those observed in the study of the discrete Schrödinger
equation with long-range interactions [49–51]. When a nonlinear-
ity is added to the fractional Schrödinger dynamics, decoherence
and fluctuations are observed if the initial center of mass is large.
Compared to the results in linear cases, we found that the local
nonlinear interactions can reduce or delay the emergence of deco-
herence in the dynamics. Our results suggest that the decoherence
comes from the long-range interactions due to the fractional Lapla-
cian rather than the nonlinearity. More work is needed to better
understand this decoherence in the soliton dynamics of fractional
Schrödinger equations.
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