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We investigate the two-dimensional dynamic motion of magnetic particles of ellipsoidal
shapes in shear flow under the influence of a uniform magnetic field. In the first part,
we present a theoretical analysis of the rotational dynamics of the particles in simple
shear flow. By considering paramagnetic and ferromagnetic particles, we study the effects
of the direction and strength of the magnetic field on the particle rotation. The critical
magnetic-field strength, at which particle rotation is impeded, is determined. In a weak-field
regime (i.e., below the critical strength) where the particles execute complete rotations, the
symmetry property of the rotational velocity is shown to depend on the direction of the
magnetic field. In a strong-field regime (i.e., above the critical strength), the particles
are impeded at steady angles and the stability of these angles is examined. Under a
uniform field, paramagnetic and ferromagnetic particles behave differently, in terms of
the critical strength, symmetry property of the rotational velocity, and steady angles. In
the second part, we use two-dimensional numerical simulations to study the implications
of rotational dynamics for lateral migration of the particles in wall-bound shear flows. In
the weak-field regime, the paramagnetic prolate particles migrate away when the field is
applied perpendicular to the flow and towards the bounded wall when the field is applied
parallel to the flow. Ferromagnetic particles exhibit negligible migration under fields that
are parallel or perpendicular to the flow. The different lateral migration behaviors are due
to the difference in the symmetry property of particle rotational velocity. In the strong-field
regime, the particles are impeded at different stable steady angles, which result in different
lateral migration behaviors as well. The fundamental insights from our work demonstrate
various feasible strategies for manipulating paramagnetic and ferromagnetic particles.
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I. INTRODUCTION

A magnetic field is commonly used to manipulate the transport of micro- and nanosize magnetic
particles in a number of technological fields. For example, magnetic separations of ferromagnetic and
paramagnetic particles are used in many applications, including metal manufacturing, mining, waste
water treatment, food processing, biosciences, and biotechnology [1,2]. In medicine, magnetically
assisted drug delivery relies on external magnetic forces to guide the transport of magnetic drug
carriers to specific locations in order to enhance drug delivery efficiency [3]. The basic principle
of most magnetic manipulations is to use magnetic forces to extract or retain targets of interests,
e.g., ferromagnetic impurities [4], cells that have intrinsic magnetic moments [2], and diamagnetic
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biological entities that are labeled with magnetic particles [2]. Generating magnetic forces requires
a spatially nonuniform field, i.e., a magnetic-field gradient [1,5].

Recent experimental [6,7] and numerical studies [8,9] have demonstrated a unique way to
manipulate transport behaviors of nonspherical particles by combining a uniform magnetic field and
shear flows at the micrometer length scale and in the low-Reynolds-number flow regime. Although
uniform fields exert no forces, a nonzero magnetic torque is able to induce a lateral migration, which
results in focusing and separation of particles by their nonspherical shape. In the work of Zhou et al.
[7], the magnetic torque breaks the symmetry of the rotational velocity of paramagnetic particles.
Lateral migration of the particle is a result of the coupling of the asymmetric rotation and translation
via particle-wall hydrodynamic interactions. By using numerical simulations and a far-field theory,
Matsunaga et al. showed that it is possible to induce lateral migration of ferromagnetic particles
in a strong magnetic field [8,9]. The working principle is based on the pinning of ellipsoids at a
quasisteady angle, which results in a nonzero transverse motion due to the vertical component of the
image stresslet caused by the wall [8,10]. In both cases, the lateral migration motions are attributed
to hydrodynamic interactions between the particle and wall under the intervention of magnetic
torques. The difference of lateral migration velocities is key to continuous magnetic separation in
microfluidics [11].

Effective and precise manipulation of particles by using torques needs a fundamental knowledge
of particle rotational dynamics in shear flows. Earlier theoretical and experimental work investigated
the effect of uniform magnetic and electric fields on the rotation of ellipsoidal particles in shear flows
[12–14] at zero Reynolds number. Dielectric ellipsoids, when subjected to a uniform electric field
perpendicular to the flow direction, spend a longer time in the first half than in the second half of
the rotation at low-field strength and they are impeded from rotation above a critical electric-field
strength [12,13]. Almog and Frankel showed that a dipolar spheroid (ferromagnetic) in an unbounded
simple shear flow spirals to a single orbit when subjected to a weak external torque and reaches stable
orientations under a sufficiently strong torque [15].

However, there has been no study that systematically investigates the effect of magnetic properties
(paramagnetic or ferromagnetic) on particle dynamics in shear flows. It is well known that
paramagnetic and ferromagnetic materials exhibit different magnetic responses to external magnetic
fields. For a paramagnetic particle, its magnetic moment is induced by an external magnetic field
and changes with the external field while ferromagnetic particles have a permanent moment in a
unique direction and remain the same under an external magnetic field. These two kinds of magnetic
particles are also of most interest for practical separation applications mentioned earlier.

In the first part of this work, we investigate theoretically the rotational dynamics of prolate
ellipsoidal particles, which are made of paramagnetic and ferromagnetic materials, in a three-
dimensional (3D) simple shear flow at the zero-Reynolds-number limit. In our analysis, a uniform
magnetic field is imposed at an arbitrary direction relative to the flow direction. We introduce
dimensionless parameters Sp and Sf to characterize the relative strength between the magnetic
and hydrodynamic torques. Our theory shows that the field strength Sp or Sf and field direction β

dictate the rotational dynamics of the particles. Above a critical strength (or in a strong field), particle
rotation is impeded at steady angles. Below the critical strength (or in a weak field), the particle is able
to execute complete rotations, but the symmetry of the rotational velocity can be broken or preserved
depending on the field direction and the magnetic property of the particle. In the second part of this
work, we use 2D numerical simulations to demonstrate different lateral migration motions for the two
kinds of particles in wall-bound shear flows resulting from their rotational dynamics. Due to different
magnetic properties, there are several possible ways to separate ferromagnetic and paramagnetic
particles by applying a uniform magnetic field parallel or perpendicular to the flow direction.

II. FORMULATION OF PROBLEM

As shown in Fig. 1, our analysis considers a prolate ellipsoidal particle (with semimajor axis a,
semiminor axes b = c, and particle aspect ratio r = a/b) in a 3D simple shear flow u = γ̇ z, with

084201-2



DYNAMICS OF PARAMAGNETIC AND FERROMAGNETIC …

FIG. 1. Schematic of a magnetic prolate ellipsoid (major axis 2a and minor axis 2b = 2c) in a simple shear
flow. A uniform magnetic field is imposed at an arbitrary direction, characterized by β. The particle orientation
is denoted by φ, and later φp and φf will be used to distinguish paramagnetic and ferromagnetic particles.

γ̇ denoting the shear rate. An external magnetic field H0 = H0(sin β, 0, cos β ) is applied parallel to
the x-z plane, where H0 denotes its magnitude and β represents the angle measured from the positive
z axis as shown in Fig. 1. In this study, we restrict our analysis to the in-plane motion of the particle.
The assumption of in-plane motion is justified by characteristics of typical experiment setups: (a) A
static uniform magnetic field is often applied parallel to the x-z plane and (b) the particles normally
have to go through a wide section of channel before entering the main fluidic channel. In those
wide channel sections, the flow speed is small and allows sufficient time for the magnetic field to
reorientate the long axis of ellipsoidal particles to the x-z plane. The in-plane motion was observed
in our earlier work [6,7]. We assume that the particle is neutrally buoyant and the Brownian effect
is negligible for micrometer-size particles. The fluid is assumed to be nonmagnetic and Newtonian
with constant density ρ and dynamic viscosity η. We further assume that fluid and particle inertia is
negligible (i.e., zero Reynolds number). Therefore, the hydrodynamic and magnetic torques dictate
the rotational dynamics of the particles.

A. Hydrodynamic torque

In the absence of a magnetic field, the particle experiences a hydrodynamic torque due to the
simple shear flow and rotates at an angular velocity ωhey in the x-z plane. Here ωh is used to signify
the rotation that is solely due to the hydrodynamic flow. The hydrodynamic torque acting on an
ellipsoid has been derived by Okagawa et al. [12]. Here, by considering the rotation in the x-z plane
only, we reexpress the hydrodynamic torque as Lh = Lhey , with its magnitude being

Lh = 2V η(r2 + 1)

r2Dxx + Dzz

[
cos (2φ)(r2 − 1)

2(r2 + 1)
γ̇ + γ̇

2
− φ̇

]
, (1)
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where V = 4
3πab2 is the volume of the particle and Dxx and Dyy are the diagonal components of the

demagnetizing factor. In Eq. (1), we have used relationships the Dxx = 1 − A and Dzz = A/2, with
A = r2

r2−1 − r cosh−1 (r )
(r2−1)3/2 for later convenience when we consider the total torque under the combined

effects of the hydrodynamic flow and magnetic field. Assuming negligible particle inertia, the total
torque (in this case only hydrodynamic torque) acting on the particle is zero, thereby leading to the
particle angular velocity in the x-z plane, ωh = φ̇ = γ̇ (r2 cos2 φ + sin2 φ)/(r2 + 1), which is the
classical result from Jeffery [16]. Introducing the dimensionless time t̄ = γ̇ t and letting φ̄(t̄ ) = φ(t ),
we have

φ̇ = r2 cos2 φ + sin2 φ

r2 + 1
. (2)

Here and in the following we remove the overbar for notational simplicity.

B. Magnetic torque

When subjected to a uniform external magnetic field H0, the magnetic particle experiences a
magnetic torque Lm = μ0(m × H0), where m is the magnetic moment of the particle and μ0 is the
magnetic permeability of vacuum. There are two common kinds of magnetic particles, paramagnetic
and ferromagnetic particles, for which the origin of the magnetic moment is different. The magnetic
moment m for a paramagnetic particle is induced by the externally applied field H0 and thus changes
with the external field. The magnetic moment m of a ferromagnetic particle is an intrinsic property,
i.e., it has a unique direction and magnitude, regardless of the presence of an external magnetic field.
The torques caused by the external magnetic field will therefore differ for particles that have the same
shape but different magnetic properties. This difference in magnetic torque has different influences
on the rotational dynamics of the particles, as we will discuss in the rest of the paper.

III. PARAMAGNETIC PARTICLE

We assume that the paramagnetic particle is homogeneous and linearly magnetizable. Then the
magnetic moment of the particle is m = χV H−, where χ is its constant magnetic susceptibility
and H− is the uniform magnetic field inside the particle [17,18]. Hence, the magnetic torque on a
paramagnetic particle can be written as Lmp = μ0χV (H− × H0). In an earlier work [7], we derived
the expression of magnetic torque on a paramagnetic ellipsoid suspended in a magnetic fluid in the x-z
plane. Utilizing this result, we obtain the torque for a magnetic particle suspended in a nonmagnetic
fluid Lmp = Lmpey , where Lmp is

Lmp = −μ0V χ2H 2
0 sin (2φp − 2β )(Dzz − Dxx )

2(1 + χDxx )(1 + χDzz)
. (3)

Note that Lmp is a periodic function of φp with period π , due to the fore-aft symmetry of the
paramagnetic ellipsoid. Thus, magnetic fields with β + π or β have the same torque and effect on
the particle motion.

In a quiescent fluid (i.e., γ̇ = 0), the magnetic torque Lmp would result in an angular velocity
ωmpey of the particle with

ωmp = −μ0χ
2H 2

0 sin (2φp − 2β )

η
λ(r, χ ), (4)

where

λ(r, χ ) = (r2Dxx + Dzz)(Dzz − Dxx )

4(r2 + 1)(1 + χDxx )(1 + χDzz)
. (5)
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We now introduce a dimensionless parameter Sp, to measure the relative strength between the
magnetic and hydrodynamic effects on a paramagnetic particle

Sp = maxφ{|ωmp|}
minφ{|ωh|} = μ0χ

2H 2
0 (r2Dxx + Dzz)(Dzz − Dxx )

4γ η(1 + χDxx )(1 + χDzz)
. (6)

That is, the parameter Sp represents the ratio between the maximum rotational speed of the particle
due to the magnetic field alone in a quiescent fluid and the minimum rotational speed due to a simple
shear flow alone for an inertia-free and freely rotating particle. It can also be interpreted as the ratio
of magnitudes between the maximum magnetic torque [when |sin(2φ − 2β )| = 1] and the minimum
hydrodynamic torque (when φ = π/2 or 3π/2). By definition, the parameter Sp includes the shape
effect of the particles via the parameters Dxx and Dzz.

The total angular velocity of the inertia-free paramagnetic particle, due to both hydrodynamic and
magnetic effects, can be determined from Lh + Lmp = 0. We now express the total dimensionless
angular velocity of the paramagnetic particle in a dimensionless form

φ̇p = r2 cos2 φp + sin2 φp − Sp sin (2φp − 2β )

r2 + 1
, (7)

which is a periodic function of φ with period of π , since Lh and Lmp also have a period of π for
ellipsoidal particles. Here we use φp to describe the orientation of a paramagnetic particle; φf will be
used for a ferromagnetic particle in Sec. IV. Note that Sp = 0 when r = 1 and Eq. (7) will become the
classical Jeffery equation. Thus, a paramagnetic sphere under a uniform magnetic field will behave
just like a normal sphere as if there was no magnetic field.

A. Critical field strength Scr
p

The angular velocity of the paramagnetic particle, as in Eq. (7), indicates that the parameters
Sp and β dictate the particle rotational behavior. For small Sp, the particle will be able to execute
complete rotations, whereas the rotation will be impeded for sufficiently large Sp. To determine the
critical field strength Scr

p , i.e., minimum field strength required to impede particle rotation, we first
study the impeded steady angle(s). Setting φ̇p = 0 in Eq. (7), we have determined the solutions in
our earlier work [7]:

tan
(
φs

p

) =
Sp cos 2β ±

√
S2

p + Sp(r2 − 1) sin 2β − r2

1 − Sp sin 2β
. (8)

The critical field strength for the existence of the steady angle(s) to Eq. (8) is given as [7]

Scr
p = 1

2
[
√

(r2 − 1)2 sin2 2β + 4r2 − (r2 − 1) sin 2β]. (9)

Substituting Sp = Scr
p , we obtain the critical steady angle

tan φcr
p = Scr

p cos 2β

1 − Scr
p sin 2β

. (10)

Figure 2(a) shows the value of Scr
p as a function of β for particles with different particle aspect ratios

(r = 2, 3, and 4). The results suggest that the field strength required to impede the particle rotation is
the smallest when β = π/4 and the largest when β = 3π/4. In Fig. 2(b), when the magnetic field is
applied at β = 0, the particle will first be impeded at an angle between π/4 and π/2. As β increases
from 0 to 3π/4, φcr

p increases monotonically until φcr
p = π when β = 3π/4. At β = π/4, φcr

p = π/2,
and φcr

p = 0 (or π ) when β = 3π/4. For any aspect ratio, the critical angle is always φcr
p = π/2 at

β = π/4 and φcr
p = 0 (or π ) when β = 3π/4. As β increases from 3π/4 to π , the critical steady

angle φcr
p increases from 0 to angles between π/4 and π/2.
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FIG. 2. (a) Critical-field strength Scr
p and (b) critical steady angle φcr

p as a function of field direction β for a
paramagnetic particle with r = 2, 3, and 4.

B. Steady angles in the strong-field regime Sp > Scr
p

When Sp > Scr
p , the particle cannot execute complete rotations, but will be impeded at φs

p, which
has two values

φs
p± = arctan

⎡⎣Sp cos 2β ±
√

S2
p + Sp(r2 − 1) sin 2β − r2

1 − Sp sin 2β

⎤⎦+ kπ, (11)

where k = 0 or 1, so that φs
p+, φs

p− ∈ [0, π ). The stability of the particle’s impeded angles can be

determined by examining the derivative of dφ̇p

dφp
|φs

p± . We plot the steady angles and their corresponding
dφ̇p

dφp
as a function of strength for a particle with r = 4, when the magnetic field is applied at β = 0

and β = π/2, as shown in Fig. 3. (See Fig. 13 in Appendix A for β = π/4 and β = 3π/4.) As can be
seen, as Sp increases above Scr

p , the two steady angles diverge from φcr
p : One steady angle increases

while the other decreases. In the limit of an infinite-field strength, i.e., Sp → ∞, the steady angle
φs

p− approaches β, meaning that the particle’s major axis is aligned with the field direction; the other
steady angle φs

p+ approaches β + π/2 [or β − π/2 if β > π/2 because β ∈ (0, π )], suggesting

the alignment of the minor axis with the field direction. Furthermore, we find that dφ̇p

dφp
|φs

p+ > 0,

hence φs
p+ is always unstable, whereas dφ̇p

dφp
|φs

p− < 0 and thus φs
p− is stable. When Sp = Scr

p , we have
dφ̇p

dφp
|φcr

p
= 0, which means that the φcr

p is neutrally stable and will not be experimentally observed
when disturbances are present.

C. Particle rotation in the weak-field regime Sp < Scr
p

In the weak-field regime, i.e., Sp < Scr
p , the particle rotates periodically with period π according

to Eq. (7). Hence, the dimensionless period of over a rotation of 2π is t (0,2π )
p = 2t (0,π )

p . For notational

simplicity, we will define the period over (s, q ) as t
(s,q )
i = ∫ q

s
dφi/φ̇i for any s and q, where i = p

for paramagnetic particles and i = f for ferromagnetic particles. For paramagnetic particles, we
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FIG. 3. Steady angles φs
p of the paramagnetic particle and the derivatives dφ̇

dφp
|φs

p
for field strength Sp > Scr

p ,
r = 4, and (a) β = 0 and (b) β = π/2.

determine that

t (0,π )
p =

∫ π

0

dφp

φ̇p

= r2 + 1

Q

[
tanh−1

(
Sp(cos 2β + sin 2β ) − 1

Q

)
− tanh−1

(
Sp(cos 2β − sin 2β ) + 1

Q

)
− tanh−1

(
Sp(cos 2β + sin 2β ) + r2

Q

)
− tanh−1

(
Sp(sin 2β − cos 2β ) + r2

Q

)]
, (12)

where Q =
√
S2

p + Sp(r2 − 1) sin 2β − r2. By definition, the period t (0,2π )
p is normalized by γ̇ −1

in the above equation. When Sp = 0, the rotational period of the Jeffery orbit over (0, 2π ) is
t0 = 2π (r + r−1) [13]. To examine the influence of the field strength and direction on the rotational
period as compared to the Jeffery period, we plot a scaled period T̃p = t (0,2π )

p /t0 in Fig. 4 as a
function of Sp and β. As can be observed, when 0 � β � π/2, the period of rotation increases with
an increase of Sp, i.e., the magnetic-field strength. By contrast, the period of rotation for π/2 < β < π

first decreases and then increases as Sp increases. For all β, the period of rotation approaches infinity
as Sp → Scr

p , i.e., the particle rotation is impeded.
The magnetic torque not only influences the rotational period, but also affects the symmetry

property of the particle’s rotational velocity. In the absence of a magnetic field, the rotational velocity
of the particle is symmetric about φ = π/2 according to Eq. (2) and thus the particle spends an equal
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FIG. 4. Influence of magnetic-field strength Sp and direction β on the rotational period when Sp < Scr
p and

r = 4.

amount of time from φ = 0 to π/2 and from π/2 to π . With an external (electric or magnetic) field,
this characteristic can be modified. In an earlier study [13], symmetry breaking of the rotational
velocity was reported for an electric field perpendicular to the flow direction, where the particle
spent a longer time for the rotation from 0 to π/2 than that from π/2 to π .

In the present study, the direction of the magnetic field, characterized by the angle β, is arbitrary
and its effect on the particle rotation needs to be understood. To characterize the symmetry or
(asymmetry) of the rotational velocity about φp = π/2, we have defined a ratio parameter τp in our
earlier work [7]:

τp = t (0,π/2)
p

/
t (0,π )
p . (13)

The value of τp was previously calculated by numerical integration [7]. In the present work, we
obtain an analytical expression of t (0,π )

p :

t (0,π/2)
p = r2 + 1

Q

[
tanh−1

(
Sp(cos 2β + sin 2β ) + r2

Q

)
− tanh−1

(
Sp(cos 2β − sin 2β ) + 1

Q

)]
. (14)

Substituting Eqs. (12) and (14) into Eq. (13) gives us an expression of τp. Based on this analytical
expression, we find that when β = π/4 or β = 3π/4, τp = 0.5, suggesting that a magnetic field
that is applied at these two directions preserves the symmetry of the rotational velocity, despite that
the rotational velocity and period are different, as shown in Fig. 4. For rotation from π to 2π , we
can define a similar parameter τ ′

p to characterize the symmetry of rotational velocity about particle
orientation at φp = 3π/2. It is noted that due to its periodicity dependence in π , the rotational velocity
from π to 2π is the same as that from 0 to π and thus τ ′

p = τp.
By definition, τp = 0.5 represents that the rotational velocity is symmetric about φp = π/2. Any

τp values that deviate from 0.5 suggest asymmetric rotations. Figure 5 illustrates the effects of Sp

and β on τp. Here we choose Sp < 1, so the particle is able to execute complete rotations for any
β ∈ (0, π ), thus allowing us to examine the effect of β. We observe that τp > 0.5 when 0 � β < π/4
or 3π/4 < β � π [Fig. 5(a)] and τp < 0.5 when π/4 < β < 3π/4 [Fig. 5(b)]. Moreover, τp becomes
further away from 0.5 as Sp increases, meaning that the asymmetry of the rotational velocity is more
prominent, because a larger Sp represents a stronger magnetic effect relative to the hydrodynamic
effect.
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FIG. 5. Dependence of τp on β for a paramagnetic particle with field strength Sp < 1 and r = 4.

IV. FERROMAGNETIC PARTICLE

For a ferromagnetic particle, we assume that its magnetization M0 is parallel to its major axis,
with M0 denoting the magnitude of magnetization. Then the particle has a magnetic moment
m = V M0 = V M0(sin φf , 0, cos φf ). The magnetic torque on a ferromagnetic particle can be
written as Lmf = μ0V (M0 × H0) = Lmf ey and we obtain Lmf as

Lmf = −μ0V M0H0 sin (φ − β ). (15)

Taking a similar approach as the paramagnetic particle, we introduce a dimensionless parameter Sf

to measure the relative strength between the magnetic and hydrodynamic torques on a ferromagnetic
particle:

Sf = μ0M0H0(r2Dxx + Dzz)

2ηγ̇
. (16)

It is worth noting that Sf is nonzero for spherical particles (r = 1). This characteristic of the magnetic
effect on spherical particles will be similar to that on ellipsoidal particles (r > 1), in clear contrast
to paramagnetic particles.

When subjected to the flow and magnetic fields, the total dimensionless angular velocity of the
ferromagnetic particle can be found,

φ̇f = r2 cos2 φf + sin2 φf − Sf sin (φf − β )

r2 + 1
, (17)

which shows that φ̇f is a periodic function of φf with period of 2π , in contrast to the angular velocity
φ̇p of a paramagnetic particle in Eq. (7). We can define the critical field strength Scr

f as the minimal
Sf required to admit real solution(s) to φ̇f = 0. However, analytical expressions of Scr

f only exist
for β = 0, π/2, π , and 3π/2. Therefore, our analysis will focus on these special cases and will
numerically analyze general cases for arbitrary β.

A. Critical field strength Scr
f

Following lines similar to the paramagnetic case, we start with finding the impeded steady angle(s).
Setting φ̇f = 0 and assuming cos(φf ) �= 0, we can rewrite Eq. (17) as

a4
(

tan φs
f

)4 + a3
(

tan φs
f

)3 + a2
(

tan φs
f

)2 + a1 tan φs
f + a0 = 0, (18)
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where the coefficients a0 = r4 − S2
f sin2 β, a1 = a3 = S2

f sin 2β, a2 = 2r2 − S2
f , and a4 = 1 −

S2
f cos2 β. If a4 �= 0, Eq. (17) gives a quartic equation of tan(φf ). Solving it yields four solutions, i.e.,

[
tan
(
φs

f

)]
1,2 = − a3

4a4
− w ± 1

2

√
−4w2 − 2p + q

w
,

(19)[
tan
(
φs

f

)]
3,4 = − a3

4a4
+ w ± 1

2

√
−4w2 − 2p − q

w
,

where

p = 8a4a2 − 3a2
3

8a2
4

, q = a3
3 − 4a4a3a2 + 8a2

4a1

8a3
4

, w = 1

2

√
−2p

3
+ 1

3a4

(
κ + δ0

κ

)
,

κ =
3

√√√√δ1 +
√

δ2
1 − 4δ3

0

2
, δ0 = a2

2 − 3a1a3 + 12a0a4,

δ1 = 2a3
2 − 9a1a2a3 + 27a2

3a0 + 27a4a
2
1 − 72a0a2a4.

The equation of tan(φs
f ) may degenerate to a cubic equation (a4 = 0 but a3 �= 0) or a quadratic

equation exists (a4 = a3 = 0). In such cases, the roots can be found analytically as well.
We now consider four special cases: β = nπ/2 with 0 � n � 3, for which Scr

f can be analytically
expressed. Setting φ̇f = 0, we obtain the impeded steady angles as follows. For case A, β = 0, and
case B, β = π ,

(
tan φs

f

)
1,2 = ±

√√√√√(S2
f − 2r2

)+ Sf

√
S2

f + 4r2(r2 − 1)

2
(
1 − S2

f

) ,

(
tan φs

f

)
3,4 = ±

√√√√√(S2
f − 2r2

)− Sf

√
S2

f + 4r2(r2 − 1)

2
(
1 − S2

f

) . (20)

In these cases, the critical field strength Scr
f = 1. For Sf � Scr

f , the real solutions tan(φs
f )3,4 exist,

whereas tan(φs
f )1,2 are complex valued. For case C, β = π/2, and case D, β = 3π/2,

(
tan φs

f

)
1,2 = ±

√√√√(S2
f − 2r2

)+ Sf

√
S2

f − 4(r2 − 1)

2
,

(
tan φs

f

)
3,4 = ±

√√√√(S2
f − 2r2

)− Sf

√
S2

f − 4(r2 − 1)

2
. (21)

In these cases, the critical field strength

Scr
f =

{
2
√

r2 − 1 if r >
√

2

r2 if r �
√

2.

For r >
√

2, there are four solutions (tan φs
f )1,2,3,4 if Scr

f � Sf � r2 or two solutions (tan φs
f )1,2 if

Sf > r2. For r �
√

2, there are always two solutions [(tan φs
f )1,2] if Sf � Scr

f . For each solution of
tan φs

f , we can determine two values of φs
f , of which only one satisfies φ̇f = 0 and is thus the true

steady angle. By substituting the critical field strength into Eqs. (20) and (21), we can determine the
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TABLE I. Summary of Scr
f and φcr

f for four special cases.

β Scr
f if r �

√
2 φcr

f if r �
√

2 Scr
f if r >

√
2 φcr

f if r >
√

2

0 1 π

2 1 π

2

π

2 r2 π 2
√

r2 − 1 arctan (±√
r2 − 2) + π

π 1 3π

2 1 3π

2

3π

2 r2 0 2
√

r2 − 1 arctan (±√
r2 − 2) + π

critical steady angles φcr
f for cases where the field is applied parallel or perpendicular to the flow

direction. The critical field strength and corresponding critical steady angles for the special cases are
summarized in Table I.

However, for arbitrary β, finding the critical field strength Scr
f is not as straightforward as in

Eq. (9), and it is impossible to find the analytical results for Scr
f . Here we use the bisection method

(also known as the binary search method) to obtain the numerical solution of Scr
f , i.e., finding the

smallest Sf such that there exists at least one real (tan φf )i (for i = 1, 2, 3, or 4) in Eq. (19). A
numerical tolerance of 10−5 is used as the stop condition for finding Scr

f by using the bisection
method.

Figure 6(a) shows the value of Scr
f as a function of β for different particle aspect ratios (r = 1.4, 2,

3, and 4). We can see that the field strength to impede the particle rotation is the smallest when β = 0,
π , or 2π , at which Scr

f = 1, and the field strength to impede the rotation is the largest when β = π/2
or 3π/2. In Fig. 6(b), when the field is applied at β = 0 (β = π ), the particle will first be impeded at
an angle of φcr

f = π/2 (φcr
f = 3π/2) for any particle aspect ratio. When the magnetic field is applied

at β = π/2 or 3π/2, the particle can be impeded at two different critical steady angles if r >
√

2. If
r �

√
2, the particle is impeded at φcr

f = π when β = π/2 or at φcr
f = 0 when β = 3π/2.

B. Steady angles in the strong field S f > Scr
f

Similar to paramagnetic particles, a ferromagnetic particle cannot execute complete rotations and
would be impeded at the steady angle(s) φs

f if the field strength Sf > Scr
f . The value of φs

f can be
found from formulas in Eq. (19), which may exist as two, three, or four solutions depending on the
particle aspect ratio r , Sf , and β. By using Eq. (19) and its degenerated forms, we map out the number

FIG. 6. (a) Critical-field strength Scr
f and (b) critical steady angle φcr

f as a function of field direction β for a
ferromagnetic particle with r = 1.4, 2, 3, and 4.
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FIG. 7. Phase diagram of the number of steady angles for ferromagnetic particles for (a) r = 1.4, (b) r = √
2,

(c) r = 2, and (d) r = 4.

of steady angles (or solutions) over the parameter space of Sf and β for several different particle
aspect ratios. Figure 7 shows that for r >

√
2, there are two regions near β = π/2 and 3π/2 where

there exist four steady angles. There are three solutions on the boundary between the two-solution
and four-solution regions. When Sf = Scr

f there are two solutions if β = π/2 or 3π/2, one solution

for other values of β, and no solutions for Sf < Scr
f . For r �

√
2, the particles can only have two

solutions at most regardless of the field direction when Sf > Scr
f and one solution when Sf = Scr

f .

The stability of the impeded angles can be analyzed similarly by examining the derivatives dφ̇f

dφf
at

φf = φs
f .

In Fig. 8, we present the result of the steady angles φs
f and their corresponding dφ̇f

dφ
for β = 0

and π/2, where the particle aspect ratio r = 4 (see additional figures in Appendix B for other β
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FIG. 8. Impeded angles φs
f of the ferromagnetic particle and derivatives

dφ̇f

dφf
|φs

f
for field strength Sf > Scr

f

and (a) β = 0 and (b) β = π/2. The particle aspect ratio is r = 4.

and particle aspect ratio r = 1.4). According to Fig. 8, we can observe several distinctive features.
First, as Sf → ∞, the particle will be impeded at two steady angles: One approaches β, i.e., the
magnetization of the particle is parallel to the field direction, and the other approaches β + π or
β − π , i.e., the magnetization of the particle is antiparallel to the field direction. Of the two steady
angles, the one with the magnetization parallel to the field (e.g., φf,3 for β = 0 and φf,2 for β = π/2)
is stable, while the other is unstable. Second, when the magnetic field is applied parallel to the flow
direction, i.e., β = π/2, the particle can be impeded at four steady angles, if 2

√
r2 − 1 < Sf < r2.

Out of the four steady angles, two of them are stable and two of them are unstable. Similar results
for β = 3π/2 are observed in Fig. 14 of Appendix B. Then the particle’s eventual stable steady
angle depends on its initial particle orientation. Similar to paramagnetic particles, when Sf = Scr

f ,
dφ̇f

dφf
|φcr

f
= 0, suggesting that the φcr

f is neutrally stable and would only be observed when there are
no disturbances.

C. Particle rotation in the weak-field regime S f < Scr
f

With a weak-field strength (Sf < Scr
f ), the particle is able to perform periodic rotations, but its

rotational period is altered by the magnetic field. Similarly, we define the dimensionless period of
over a rotation 2π as t

(0,2π )
f and introduce a scaled parameter T̃f to measure the relative change of
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FIG. 9. Dimensionless period of particle rotational as a function of Sf for various magnetic field
directions β.

the rotational period under the influence of an external uniform field,

T̃f = t
(0,2π )
f

t0
= 1

t0

∫ 2π

0

dφf

φ̇f

= 1

2π (r + r−1)

∫ 2π

0

r2 + 1

r2 cos2 φf + sin2 φf − Sf sin(φf − β )
dφf .

(22)

Unlike the case of paramagnetic particles, there do not exist analytical expressions for T̃f except
for the special cases of β. Thus, we will numerically integrate T̃f in Eq. (22) for general β. Figure 9
shows T̃f as a function of Sf with a magnetic field applied at various β. Note that T̃f is symmetric
about π/2, i.e., T̃f (β ) = T̃f (π − β ), and T̃f is periodic in π , i.e., T̃f (β ) = T̃f (π + β ). Therefore,
the scaled period T̃f is only plotted for 0 � β � π/2. As can be observed, the period of rotation
always increases with an increase of Sf , for any direction β, in contrast to the cases of paramagnetic
particles. The period of particle rotation approaches infinity as Sf → Scr

f , i.e., the particle rotation
is impeded.

We now examine the effect of the magnetic field on the symmetry property of the particle’s
rotational velocity. The rotational velocity of a ferromagnetic particle has a period of 2π , as shown in
Eq. (17). However, the ellipsoidal particle has a fore-aft symmetry, i.e., a periodicity of π . Therefore,
we need to define two ratio parameters

τf,1 = t
(0,π/2)
f

/
t

(0,π )
f , τf,2 = t

(π,3π/2)
f

/
t

(π,2π )
f . (23)

By the above definitions, τf,1 and τf,2 characterize the symmetry of rotational velocity about φf =
π/2 for particle rotation φf ∈ [0, π ] and about φf = 3π/2 for rotation φ ∈ [π, 2π ], respectively. To
assess the role of β, we choose Sf < 1 so that the particle rotation is possible for any β ∈ [0, 2π ].
As can be seen from Fig. 10, when the magnetic field is applied at β = 0 or π , τf,1 = τf,2 = 0.5,
meaning that the rotational velocity is symmetric about φf = π/2 and 3π/2. This result can be
further supported by the analytical expression of t

(0,π/2)
f for β = 0 and π :

t
(0,π/2)
f = 2(r2 + 1)√

S2 + 4r2(r2 − 1)

⎧⎨⎩ 1√
ξ 2

1 − 1

⎡⎣π

2
− arctan

⎛⎝ ξ1 − 1√
ξ 2

1 − 1

⎞⎠⎤⎦
+ 1√

ξ 2
2 − 1

⎡⎣π

2
+ arctan

⎛⎝ ξ2 − 1√
ξ 2

2 − 1

⎞⎠⎤⎦⎫⎬⎭, (24)
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FIG. 10. Dependence of (a) τf,1 and (b) τf,2 on β for different field strengths Sp < 1 and r = 4.

where

ξ1,2 = −S cos (β ) ±
√

S2 + 4r2(r2 − 1)

2(r2 − 1)
. (25)

Additionally, t
(π/2,π )
f = t

(0,π/2)
f and thus τf = 0.5. For β ∈ (0, π ), τf,1 < 0.5 and τf,2 > 0.5; for

β ∈ (π, 2π ), τf,1 > 0.5 and τf,2 < 0.5.

V. LATERAL MIGRATION IN SHEAR FLOWS NEAR A SOLID WALL

Earlier studies have suggested two different mechanisms that can cause lateral migration of
ellipsoidal magnetic particles in wall-bounded shear flows at low Reynolds number [6–8]. These
studies focused on either paramagnetic [6,7] or ferromagnetic particles [8]. In a weak magnetic
field, the asymmetry of the particle’s rotational velocity is responsible for the lateral migration: It is
experimentally shown that paramagnetic particles migrate away from a wall when τ > 0.5, towards
the wall when τ < 0.5, and stay at a constant distance when τ = 0.5. However, no study has been
reported on lateral migration of ferromagnetic particles in this regime. On the other hand, in a strong
magnetic field, the rotation of ferromagnetic particles is impeded and the particle assumes stable
quasisteady angles. The stable orientation of the particle near a wall results in a nonzero lateral (or
transverse) velocity, which is induced by the image stresslet due to the presence of a wall [8,10].
Depending on the steady angle, the particle can continuously translate away or towards the wall.
However, lateral migration of paramagnetic particles in the strong-field regime has not been studied.

Our theoretical analysis has shown that the magnetic properties of the particle play a significant
role in the rotational dynamics of a prolate spheroid in a simple shear flow and subject to a uniform
magnetic field. By considering both weak- and strong-field regimes, we show that paramagnetic
and ferromagnetic particles exhibit different rotational behaviors, in terms of symmetry of rotational
velocity and impeded steady angles (see Secs. III and IV). While our analysis is performed on
particles in a simple shear flow, the findings will qualitatively apply to particles in wall-bounded shear
flows, although the wall and velocity profile will play additional roles. These theoretical insights can
qualitatively inform us about the lateral migration motion when the particles are transported near a
solid wall in shear flows.

In the following section, we use 2D numerical simulations to illustrate the implications of magnetic
properties on the lateral migration of the particle in both weak- and strong-field regimes. Here
we consider two common field directions β = 0 and β = π/2 and analyze and discuss the lateral
migration of paramagnetic and ferromagnetic particles in different scenarios, in terms of parameter
space of β, Sp, and Sf . As we will see, the numerical simulations, while developed in two dimensions
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due to computational cost consideration, confirm the anticipated lateral migration behaviors as
predicted by the theory. Thus, the numerical and analytical studies complement each other.

A. Numerical simulation

Our direct numerical simulation is based on the finite-element method and arbitrary Lagrangian-
Eulerian method to solve for particle trajectory [19]. Similar methodologies have been successfully
used by Hu et al. [20] and Ai et al. [21–23]. The numerical model couples the flow and magnetic fields
and is implemented in COMSOL Multiphysics (see details in Appendix C). First, we use a stationary
solver to calculate the magnetic field inside and outside the particle and compute the magnetic torque
acting on the particle. Then the two-way coupling of the fluid-particle interaction model is solved
by using a time-dependent solver and by importing the previously determined magnetic torque.
Quadratic triangular elements are employed in the simulation. A fine mesh around the particle and
a finer mesh around the tip of the particle are created to accurately calculate the hydrodynamic
force and torque acting on the particle. After a grid independence test, about 12 000 and about 150
elements are used to discretize the fluid domain and particle surface, respectively. We validated
the 2D numerical simulations by a comparison with the classical Jeffery theory in prior work [19].
Further, simulations with a magnetic field applied at β = 0 for particles in 2D simple shear flows
showed good agreement with our theory.

We consider an elliptical particle (r = 4 and an equal-volume diameter d = 7 μm) immersed in a
plane Couette flow (see Fig. 16 in Appendix C). The lateral position of the particle is denoted by zp and
the particle is initially placed at zp0 = 10 μm. Based on typical applications, we have the following
estimates: external magnetic field H0 ∼ O(103–105) A/m, particle size a, b ∼ O(10) μm, fluid
viscosity η ∼ O(10−3) Pa s, fluid density ρf ∼ O(103) kg/m3, and shear rate γ̇ ∼ O(102) s−1. It is
reasonable to have χ ∼ O(1) for paramagnetic particles and magnetization M0 ∼ O(103) A/m for
ferromagnetic particles. Based on these parameters, we have the flow Reynolds number Re1 � O(1)
and particle Reynolds number Re2 	 O(1). In our numerical simulations, the magnetic properties,
magnetic-field strength, and fluid parameters are chosen to span the parameter space Sp, Sf ∼
O(10−1–102) in order to examine particle migration in both weak- and strong-field regimes. It is
known that the inertial effect can lead to lateral migration in shear flows [24,25]. In the simulations,
we choose to use Reynolds numbers Re1 ∼ O(10−2) and Re2 ∼ O(10−4) to assess lateral migration
which is largely due to the effect of the magnetic field.

B. Lateral migration in a weak field

In the weak-field regime, the particles are able to perform complete rotations while being
transported by the shear flow. Here we plot the change of the lateral position normalized by the
particle size (zp − zp0)/d over a rotation of 2π , as shown in Fig. 11. Comparison of the lateral
migration between the two kinds of particles shows drastically different behaviors. The paramagnetic
particle migrates away from the wall when the magnetic field is applied at β = 0 and towards the
wall when β = π/2. In contrast, the ferromagnetic particle demonstrates zero net migrations over a
rotation of 2π , when β = 0 or π/2.

The different lateral migration can be explained by the symmetry property of the rotational
velocity according to Eq. (13) and Fig. 5 for paramagnetic particles and to Eq. (23) and Fig. 10
for ferromagnetic particles. When β = 0 (or β = π/2), the paramagnetic particles have τp > 0.5
(or τp < 0.5) for both rotations from φp = 0 to π and φp = π to 2π , thus they continuously move
upward (or downward); in contrast the ferromagnetic particles have τf,1 < 0.5 from φf = 0 to π ,
thus moving downward, and then τf,2 > 0.5 from φf = π to 2π , thus moving upward. Furthermore,
because (τf,1 + τf,2)/2 = 0.5, the upward and downward migration distances are approximately the
same, leading to a zero net migration over a rotation of 2π . The distinctive migration behaviors suggest
that using aweak field is a feasible way to separate these two kinds of magnetic particles. For instance,
if S = 0.664 and β = 0, a paramagnetic particle (r = 4) moves in the lateral direction by 0.05d, while
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FIG. 11. Lateral migration of (a) paramagnetic and (b) ferromagnetic particles in the weak-field regime
(Sp ≈ 0.664 and Sf ≈ 0.664) over a rotation of 2π with r = 4.

a ferromagnetic particle remains at the same lateral position after completing one cycle of rotation.
Thus, for the paramagnetic particles to move by a lateral distance of d, it would take 20 rotational
cycles, translating to a dimensionless time t̄ = 20t0γ̇ = 20 2π

γ̇
(r + 1/r )γ̇ = 40π (r + 1/r ) ≈ 500.

C. Lateral migration in a strong field

In the strong-field regime, the magnetic torque is large enough to prevent particles from completing
periodic rotations and the particles are pinned at steady angles. Under these circumstances, the stable
orientation of the particle determines the lateral migration (or traverse) velocity [6–8]. Assuming that
both paramagnetic and ferromagnetic particles are subject to the same dimensionless field strength,
i.e., Sp = Sf , they will be pinned at different stable orientations, which can then lead to different
lateral migration velocities. By adapting the far-field theory of Matsunaga et al. [8] into our analysis,
the lateral migration velocity of the particles is related to the steady angle

Uz,p ≈ C(r )d3γ̇
1

z2
p

sin 2φss
p , Uz,f ≈ C(r )d3γ̇

1

z2
p

sin 2φss
f , (26)

where Uz,p and Uz,f are the lateral migration velocities, φss
p and φss

f are the stable steady angles,
for paramagnetic and ferromagnetic particles, respectively, and C(r ) is a constant depending on the
particle aspect ratio r . It has been shown numerically and theoretically that the sign of sin 2φss

p or
sin 2φss

f determines the migration direction: Particles move away from the wall for sin 2φss
p > 0 (or

sin 2φss
f > 0) [8].

Note that, although there may exist two or more steady angles, only the stable steady angles dictate
the lateral migration (magnitude and direction) of ellipsoidal particles. According to Eqs. (11), (20),
and (21) and our stability analysis in Secs. III and IV, we can write the stable steady angles for
paramagnetic and ferromagnetic particles by substituting β = 0 and π/2. The explicit expressions
are included here for convenience and clarity as follows:

φss
p,β=0 = arctan

(
Sp −

√
S2

p − r2
)

if Sp > r, (27)

φss
p,β=π/2 = arctan

(−Sp −
√

S2
p − r2

)+ π if Sp > r, (28)
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FIG. 12. Lateral migration of paramagnetic and ferromagnetic particles in a strong field with r = 4.
(a) Theoretical values of sin(2φss

p,β=0) (solid line) and sin(2φss
f,β=0 ) (dashed line) for β = 0. (b) Lateral positions

of the particles as a function of the dimensionless time γ̇ t from the numerical simulations when β = 0.
(c) Theoretical values of sin(2φss

p,β=π/2) (solid line), sin(2φss
f,β=π/2,1) (dashed line), and sin(2φss

f,β=π/2,2) (dot-
dashed line) for β = π/2. (d) Lateral positions of the particles as a function of the dimensionless time γ̇ t from
the numerical simulations when β = π/2. Depending on its initial orientation, the ferromagnetic particle shows
two different lateral migration behaviors for Sf = 15.

φss
f,β=0 = arctan

⎛⎜⎜⎝
√√√√√(S2

f − 2r2
)− Sf

√
S2

f + 4r2(r2 − 1)

2
(
1 − S2

f

)
⎞⎟⎟⎠ if Sf > 1, (29)

φss
f,β=π/2,1 = arctan

⎛⎜⎜⎝−

√√√√(S2
f − 2r2

)+ Sf

√
S2

f − 4(r2 − 1)

2

⎞⎟⎟⎠+ π if Sf > 2
√

r2 − 1, (30)

φss
f,β=π/2,2 = arctan

⎛⎜⎜⎝
√√√√(S2

f − 2r2
)− Sf

√
S2

f − 4(r2 − 1)

2

⎞⎟⎟⎠+ π

if r >
√

2, 2
√

r2 − 1 � Sf � r2. (31)
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It is noted that for r >
√

2, there exist two possible stable steady angles φss
f,β=π/2,1 and φss

f,β=π/2,2

when Scr
f � Sf � r2.

Figure 12(a) illustrates the characteristics of stable steady angles and lateral migration of particles
in a strong field when β = 0. We can observe that sin 2φss

p,β=0 < sin 2φss
f,β=0 except in a small interval

of Sp, Sf , suggesting that ferromagnetic particles have a higher migration speed for most of the
strong-field regime. Figure 12(b) shows the lateral position of the particles as a function of time
from 2D numerical simulations for β = 0. Both the paramagnetic and ferromagnetic particles move
away from the channel wall, in qualitative agreement with the theoretical prediction. Furthermore, it
can be seen that the paramagnetic and ferromagnetic particles migrate away from the wall at similar
speeds when Sp = Sf = 15, while the ferromagnetic particle moves faster when Sp = Sf = 40.

Figure 12(c) shows the characteristics of stable steady angles and lateral migration of particles in
a strong field when β = π/2. Interestingly, the stable steady angles of the ferromagnetic particle can
assume two possible values depending on the initial orientation of the particle for an intermediate-field
strength, if the particle aspect ratio r >

√
2. As a result, the ferromagnetic particle can move either

away from the wall or towards the wall. Such a prediction is confirmed by our numerical simulation
by choosing different initial particle orientation, as shown in Fig. 12(d). In contrast, the paramagnetic
particle always moves towards the wall due to sin 2φss

p,β=π/2 < 0.
The above findings suggest that it is also possible to separate paramagnetic and ferromagnetic

particles by applying a strong magnetic field either perpendicular (β = 0) or parallel (β = π/2) to
the flow direction. When S = 15 and β = π/2, it takes approximately a dimensionless time of 50
for a ferromagnetic particle to move laterally by a distance of d, while the paramagnetic particle
only moves negligibly in the lateral direction. It is noted that when Sp, Sf → ∞, the stable steady
angles φss

p and φss
f both approach β; however, they approach β at different rates. It can be shown

that when β = 0 and π/2, the value of sin 2φss
f / sin 2φss

p → 2, suggesting a possible way to separate
ferromagnetic and paramagnetic particles to this limit. However, with Sp, Sf → ∞, the magnitude
of lateral migration velocity will approach zero. Hence, when strong fields are used to separate
ferromagnetic and paramagnetic particles, a field strength should be judiciously selected.

VI. CONCLUSION

We have investigated the rotational dynamics of paramagnetic and ferromagnetic ellipsoidal
particles that are simultaneously subjected to a simple shear flow and a uniform magnetic field.
We determined, analytically and numerically, the critical field strength of an arbitrarily directed
magnetic field to impede particle rotations. When the field strength is larger than the critical strength,
we determined the steady angles at which the particles are impeded and their stability was analyzed.
The number of stable steady angles were examined based on the type and aspect ratio of the particle
and the direction of the uniform magnetic field. When the field strength is smaller than the critical
strength, we analyzed the effect of field direction on particle rotation, including the rotational period
and the symmetry property of the particle’s rotational velocity. Our findings show that the magnetic
properties of the particles have a crucial role in the particle rotations and will result in drastically
different lateral migration behaviors when the particles are transported in wall-bounded shear flows.
By using numerical simulations, we investigated the particle lateral migration by imposing magnetic
fields perpendicular and parallel to the flow direction. It was shown that in the weak-field regime,
the paramagnetic particles move away from and towards the wall over a rotation of 2π , while the
ferromagnetic particles exhibit negligible lateral migration. In the strong-field regime, paramagnetic
and ferromagnetic particles migrate laterally at different velocities due to their difference in stable
steady angles.

Our theory suggests several feasible ways to separate paramagnetic and ferromagnetic particles
by applying magnetic fields either parallel or perpendicular to the flow. Successful separation is
possible when Sf and Sp are both smaller than their respective critical field strengths. Separation is
possible in a strong field when both kinds of particles are impeded from rotation, which can result
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in different stable steady angles. In practical experimental settings, it is also possible to achieve
separation by having one particle in the weak field and and the other in the strong field. Although the
analysis was performed on a single particle, the results would apply to dilute suspensions as long as
the particle-particle interactions is negligible. For example, in microfluidics applications, samples of
interest often have low concentrations. Our work has great potential in bioseparations of magnetic
biological entities, such as magnetobacteria which have permanent moments and biological cells
which are labeled with magnetic beads.
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APPENDIX A: STEADY ANGLES FOR PARAMAGNETIC PARTICLES

Here we show the steady angles of paramagnetic particles for Sp > Scr
f when the magnetic field is

applied in an arbitrary direction. Figure 13 shows that for β = π/4 and β = 3π/4, the steady angles
demonstrates similar characteristics, as we discussed in the main text. Both φs

p+ and φs
p− angles

diverge from φcr
p into two branches, where φs

p− is stable and φs
p+ is unstable. The major differences

between the arbitrary cases and the β = 0 and β = π/2 cases are not only Scr
p and φcr

p values, but also

FIG. 13. Steady angles φs
p of the paramagnetic particle and the derivatives dφ̇

dφp
|φs

p
for field strength Sp > Scr

p ,
r = 4, and (a) β = π/4 and (b) β = 3π/4.
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FIG. 14. Steady angles φs
f of the ferromagnetic particle and derivatives

dφ̇f

dφf
|φs

f
for field strength Sf > Scr

f

and (a) β = π and (b) β = 3π/2. The particle aspect ratio is r = 4.

the rate at which φs
p− approaches β as Sp increases above Scr

p . In the limit of an infinite-field strength,
the particle’s major axis or minor axis can be aligned with the field direction, with the former being
a stable configuration.

APPENDIX B: STEADY ANGLES FOR FERROMAGNETIC PARTICLES

Figure 14 shows the steady angles of a ferromagnetic particle and the corresponding derivatives,
with r = 4 when β = π and 3π/2. Their behaviors are similar to those of the cases of β = 0 and
π/2 in Fig. 8. It is noted that there exist two (when Sf > r2), three (when Sf = r2), or four (when
2
√

r2 − 1 < Sf < r2) steady angles when β = 3π/2.
Figure 15 plots the steady angles for a ferromagnetic particle with aspect ratio r = 1.4 <

√
2,

when β = 0, π/2, π , and 3π/2. For Sf > Scr
f , there are always two steady angles: φf,3,4 when β = 0

and π , and φf,1,2 when β = π/2 and 3π/2. One of the two steady angles (φf,3 and φf,2) is the stable
one.

APPENDIX C: NUMERICAL SIMULATION

We consider an elliptical particle (r = 4) immersed in a plane Couette flow, with a shear rate
γ̇ = 80 s−1, as shown in Fig. 16. The fluid is a Newtonian fluid with a density of 1000 kg/m3 and
dynamic viscosity of 0.1 Pa s. The density of the particle is 1000 kg/m3. The equivalent diameter of
the particle is d = 7 μm. The size of the computational domain � is w = 100 μm and l = 800 μm.
The particle surface is denoted by �. The Reynolds number of the flow Re1 ≈ ρw2γ̇ /μ = 8 × 10−3
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FIG. 15. Steady angles φs
f of a ferromagnetic particle with r = 1.4 and derivatives

dφ̇f

dφf
|φs

f
for field strength

Sf > Scr
f and (a) β = 0, (b) β = π/2, (c) β = π , and (d) β = 3π/2.
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FIG. 16. Schematic of numerical model of an ellipsoidal particle suspended in a simple shear flow under
the influence of a uniform magnetic field.

and the particle Reynolds number Re2 ≈ ρd2γ̇ /μ = 8 × 10−5, thus the effect of inertia is negligible.
The lateral position of the particle is denoted by zp. The orientation angle of the particle is denoted
by φ. A uniform magnetic field H0 is imposed at an arbitrary direction, denoted by β.

The translation and rotation of particle in the x-z plane are governed by Newton’s second law and
Euler’s equation

mp

dU
dt

= Fh, Ip

dω

dt
= Lh + Lm, (C1)

where mp and Ip are the mass and moment of inertia of the particle, U and ω are the translational and
rotational velocities of the particle, respectively, Fh is the hydrodynamic force, Lm is the magnetic
torque, and Lh is the hydrodynamic torque. Note that ω = φ̇ey for the in-plane rotational motion of
the particle.

The coupling of the flow and magnetic fields is via the velocity boundary condition of the flow
field on the particle surface, given by

u = U + ω × (xs − xp ), (C2)

where xs and xp are the position vectors of the surface and the center of the particle. The hydrodynamic
force and torque acting on the particle are given by

Fh =
∫

(σ h · n)dS, Lh =
∫

[σ h × (xs − xp ) · n)]dS, (C3)

where σ h is the hydrodynamic stress tensor acting on the surface of particle. The magnetic torque
acting on the particle is Lm = μ0(m × H0). Given the initial position C(0) and initial orientation of
the particle φ(0) = φ(0)ey , the position of center C(t ) = (xp, zp ) and the orientation φ of particle
are computed by

C(t ) = C(0) +
∫ t

0
U(s)ds, φ(t ) = φ(0) +

∫ t

0
φ̇(s)ds. (C4)
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FIG. 17. Comparison between numerical simulations and theories: (a) particle rotation in a simple shear
flow, (b) rotational period of paramagnetic particles in a magnetic field of β = 0, and (c) rotational period of
ferromagnetic particles in a magnetic field of β = 0. A particle aspect ratio r = 4 is used in these comparisons.

It is known that 2D simulations can often give quantitatively different results from 3D simulations.
However, in terms of identifying salient features of physics, similarities between 2D and 3D flows
at low Reynolds number often outweigh their quantitative differences. In fact, 2D simulations of
an elliptical particle in a simple shear flow have been shown to be able to accurately describe the
in-plane rotational dynamics of a spheroidal ellipsoid in a 3D simple shear flow (see Ref. [26]). We
validated the 2D numerical simulations by comparison with the classical Jeffery theory in prior work
[19]. Further, simulations with a magnetic field applied at β = 0 for particles in 2D simple shear
flows showed good agreement with our theory, as shown Fig. 17.
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