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We propose an efficient and spectrally accurate numerical method for computing vortex lattices in rapid
rotating Bose–Einstein condensates (BECs), especially with strong repulsive interatomic interaction. The
key ingredient of this method is to discretize the normalized gradient flow by Fourier spectral method in
space and by semi-implicit Euler method in time. Different vortex lattice structures of condensate ground
states in two-dimensional (2D) and 3D rapid rotating BECs are reported for both harmonic and harmonic-
plus-quartic potentials. In addition, vortex lattices in rotating BECs with optical lattice potentials are also
presented.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Gaseous Bose–Einstein condensates (BECs) offer a versatile test-
ing ground for the study of superfluidity where quantized vor-
tices play an important role. The first observation of a single
vortex line was in weakly interacting alkali gases by using the
Reman transition phase-printing method [1,2]. Multiply charged
vortices were also created by using the topological phase engineer-
ing method [3]. Recently, vortex lattices containing more than one
hundred vortices were observed by rotating the condensate with
a laser spoon [4–7]. It is expected that more complicated vortex
clusters can be created in the future, and such states would enable
various opportunities, ranging from investigating the properties
of random polynomials [8] to using vortices in quantum memo-
ries [9]. In addition, recent experimental developments enable one
to create a confinement potential either tighter than a harmonic
potential or as an optical lattice, which opens possible methods to
explore the nature of BECs with/without the oscillating potential.
All these developments spur great interests in the study of vortex
lattice structures of condensate ground state in rapid rotating BECs
with strong repulsive interaction.
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There are many different numerical methods proposed in the
literature to compute the stationary state of non-rotating and ro-
tating BECs. For example, an imaginary time method was used
in [10,11] for finding ground states of BECs, a hybrid three steps
Runge–Kutta–Crank–Nicolson scheme was proposed in [12,13] for
computing S-shape or U-shape vortex lines in 3D BECs, an adap-
tive step-size Runge–Kutta finite difference method was applied
in [14,15] for studying the nucleation of vortex arrays in ro-
tating anisotropic BECs, and a backward Euler finite difference
method was proposed in [16,17] for computing ground states of
non-rotating and rotating BECs. More approaches can be found
in [18–24] and references therein. In all the above methods, the
second- or fourth-order compact finite difference scheme is used
to discretize space derivatives. Due to the finite order accuracy
(usually second-order, fourth-order or even sixth-order) of the spa-
tial discretization, these methods have difficulties to get the accu-
rate results in rapid rotating BECs, especially with strong repulsive
interaction. Because in this case, very complicated vortex lattice
structures may appear in the condensate [25–27], and the high
spatial resolution of the numerical method is strongly demanded.

In this paper, we present an efficient and spectrally accurate
numerical method to compute vortex lattices of condensate ground
state in rapid rotating BECs, especially when the interatomic inter-
action is strongly repulsive. This method discretizes the normalized
gradient flow, also known as the Gross–Pitaevskii equation (GPE) in
the imaginary time, by Fourier spectral method for spatial deriva-
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tives and backward Euler scheme for time derivatives. The fast
direct Poisson solver is applied to solve the large linear system
at each time step, and also the stabilization technique is used such
that the time step can be chosen as large as possible [28]. Vor-
tex lattice structures of condensate ground state are reported in
the 2D and 3D rapid rotating BECs with different external poten-
tials. We obtain results in the strong interacting regime which are
not reported in the literature. In addition, we also compute vortex
lattices of rotating BEC with optical lattice potentials not reported
before. In fact, our preliminary aim of the paper is not to find new
physics, but to propose an efficient and most accurate numerical
method for computing vortex lattices of condensate ground state
in rapid rotating BECs.

This paper is organized as follows. In Section 2 we introduce
the model under the investigation and discuss different trapping
potentials. In Section 3 the numerical methods are introduced in
detail. Vortex lattices of condensate ground state in 2D and 3D
rotating BECs are reported in Sections 4 and 5, respectively. Finally,
we make the conclusions in Section 6.

2. The Gross–Pitaevskii equation

At temperatures T much smaller than the critical temperature
Tc [29], a rotating BEC trapped in an external potential can be de-
scribed by a macroscopic wave function ψ(x, t) which obeys the
Gross–Pitaevskii equation (GPE). In the rotating frame with a fre-
quency Ω around the z-axis, the GPE reads

ih̄
∂ψ(x, t)

∂t
=

[
− h̄2

2m
∇2 + V trap(x) + g|ψ |2 − ΩLz

]
ψ(x, t), t � 0,

(2.1)

where x = (x, y, z)T ∈ R3 is the spatial coordinate vector, h̄ is the
Planck constant, m is the atomic mass, g = 4π h̄2as/m represents
the strength of the interaction between particles with as (posi-
tive for repulsive interaction and negative for attractive interaction)
the s-wave scattering length, and Lz = −ih̄(x∂y − y∂x) is the z-
component of the angular momentum. V trap(x) is a real-valued
external potential whose shape is determined by the type of sys-
tem under investigations, and if the harmonic trapping potential is
considered, it has the form

V trap(x) = m

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2), (2.2)

where ωx , ωy and ωz are the trapping frequencies in x-, y-, and
z-direction, respectively. The wave function is normalized by∫
R3

∣∣ψ(x, t)
∣∣2

dx = N, t � 0 (2.3)

with N the total number of atoms.
For the numerical purpose, it is convenient to rescale the spa-

tial and temporal variables. By assuming ωx = min{ωx,ωy,ωz} and
introducing

x = a0̃x, t = t̃

ωx
, Ω = ωxΩ̃, ψ =

√
Nψ̃

a3/2
0

(2.4)

with a0 = √
h̄/2mωx , the GPE (2.1) can be reduced to the following

dimensionless form (removing ˜ for simplicity):

i
∂ψ(x, t)

∂t
=

[
−1

2
∇2 + V 3(x) + β3

∣∣ψ(x, t)
∣∣2 − ΩLz

]
ψ(x, t), (2.5)

where β3 = 4π Nas/a0 and Lz = −i(x∂y − y∂x). The dimensionless
harmonic potential takes the form

V 3(x) = 1 (
x2 + γ 2

y y2 + γ 2
z z2) (2.6)
2

with γy = ωy/ωx and γz = ωz/ωx . The wave function satisfies that∫
R3

∣∣ψ(x, t)
∣∣2

dx = 1, t � 0. (2.7)

Furthermore, if it is tightly confined in the axial direction, i.e.
γz � 1 and γy = O (1), the dynamics of a BEC can be well approx-
imated by the 2D GPE under the normalization (2.7) [12,16]:

i∂tψ(x, t) =
[
−1

2
∇2 + V 2(x) + β2

∣∣ψ(x, t)
∣∣2 − ΩLz

]
ψ(x, t) (2.8)

with x = (x, y)T ∈ R2, and

V 2(x) = 1

2

(
x2 + γ 2

y y2), β2 ≈ β3

√
γz

2π
.

In recent experiments, other potentials are also applied to study
the behavior of rapid rotating BECs. For example, the harmonic-
plus-quartic potential has the form [25,30,31]

Vd(x) =
{

(1 − α)r2 + κr4, d = 2,

(1 − α)r2 + κr4 + γ 2
z z2, d = 3,

(2.9)

where r = √
x2 + y2, and α, κ and γz are positive constants; the

harmonic-plus-optical lattice potential reads [23]

Vd(x) =
{

1
2 (x2 + y2 + V opt), d = 2,

1
2 (x2 + y2 + γ 2

z z2 + V opt), d = 3,
(2.10)

where V opt(x, y) = V 0(sin2(κx) + sin2(κ y)) is the optical lattice
potential with V 0 and κ two positive constants.

The ground state solution φg(x) of the d-dimensional (d = 2,3)
GPE is defined as which minimizes the Gross–Pitaevskii energy

Eβd,Ω(φ) =
∫
Rd

[
1

2
|∇φ|2 + Vd(x)|φ|2 + βd

2
|φ|4

− Ω Re(φ∗Lzφ)

]
dx, (2.11)

and satisfies the normalization constraint∫
Rd

∣∣φ(x)
∣∣2

dx = 1, (2.12)

where f ∗ and Re( f ) denote the conjugate and the real part of the
function f , respectively.

3. Numerical methods

In the literature (see, e.g. [17,23,28]), the minimizer of Eβd,Ω(φ)

was found by applying an imaginary time (i.e. t → −it) in the GPE
and evolving a gradient flow with discrete normalization [16]. In
this section, we will first introduce the normalized gradient flow
under the rotational frame and then present spectral type methods
to discretize it.

3.1. Normalized gradient flow

Choose a time step �t > 0 and define the time sequence tn =
n�t for n = 0,1, . . . . For each time interval [tn, tn+1), the gradient
flow (or called as the GPE in imaginary time) has the form [12,16]

∂tφ(x, t) =
[

1

2
∇2 − Vd(x) − βd

∣∣φ(x, t)
∣∣2 + ΩLz

]
φ(x, t), (3.13)

which also can be viewed as applying the steepest decent method
to the energy functional (2.11). To satisfy the normalization (2.12),
at the end of each step the solution is projected back to the unit
sphere, i.e., letting
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φ(x, tn+1) = φ(x, tn+1)

‖φ(·, tn+1)‖
with

∥∥φ(·, tn+1)
∥∥2 =

∫
Rd

∣∣φ(x, tn+1)
∣∣2

dx. (3.14)

The initial condition for (3.13) is given by

φ(x,0) = φ0(x) with
∫
Rd

∣∣φ0(x)
∣∣2

dx = 1. (3.15)

It was proven that when βd = 0, Ω = 0 and Vd(x) � 0, the normal-
ized gradient flow (3.13)–(3.15) is energy diminishing for any time
step �t > 0 and any initial data φ0(x) [16,28].

3.2. Semi-implicit Euler spectral discretization

For simplicity, the numerical method is introduced only for the
2D case, and its generalization to 3D case is straightforward. Due
to the external trapping potential, e.g., (2.6), (2.9) and (2.10), the
solution of (3.13)–(3.15) decays to zero exponentially fast when
|x| → ∞. Thus in practical computations, we can truncate the
problem into a bounded computational domain Ωx = [a,b] × [c,d]
with homogeneous Dirichlet boundary conditions, where |a|, b, |c|
and d are sufficiently large to ensure that the effect of the trun-
cated boundary can be neglected.

Choose mesh sizes �x = (b −a)/M > 0 and �y = (d − c)/N > 0
with M and N two even positive integers. Denote grid points

x j = a + j�x, yk = c + k�y,

for j = 0,1, . . . , M and k = 0,1, . . . , N . Let φn
j,k be the numerical

approximation of φ(x j, yk, tn) and φn be the solution vector with
components φn

j,k . Then the semi-implicit Euler Fourier pseudospec-
tral discretization for (3.13) with d = 2 can be given by

φ∗
j,k − φn

j,k

�t
=

(
1

2
∇2

h − V 2(x j, yk) − β2
∣∣φn

j,k

∣∣2 + ΩLh

)
φ∗

j,k (3.16)

for 1 � j � M − 1 and 1 � k � N − 1, where ∇2
h and Lh , the pseu-

dospectral differential operators approximating the operators ∇2

and Lz , respectively, are defined as [32]

∇2
h φ∗

j,k = −
M/2−1∑

p=−M/2

N/2−1∑
q=−N/2

(
μ2

p + λ2
q

)
φ̂∗

p,qei 2 jpπ
M ei 2kqπ

N ,

Lhφ∗
j,k = (

x j Dh
y − yk Dh

x

)
φ∗

j,k,

Dh
xφ

∗
j,k =

M/2−1∑
p=−M/2

N/2−1∑
q=−N/2

μpφ̂∗
p,qei 2 jpπ

M ei 2kqπ
N ,

Dh
yφ

∗
j,k =

M/2−1∑
p=−M/2

N/2−1∑
q=−N/2

λqφ̂
∗
p,qei 2 jpπ

M ei 2kqπ
N

with

φ̂∗
p,q = 1

MN

M−1∑
j=0

N−1∑
k=0

φ∗
j,ke−i 2 jpπ

M e−i 2kqπ
N ,

μp = 2pπ

b − a
, λq = 2qπ

d − c
,

for p = −M/2, . . . , M/2 − 1 and q = −N/2, . . . , N/2 − 1. In addi-
tion, the projection step (3.14) and the initial condition (3.15) can
be discretized, respectively, as

φn+1
j,k = φ∗

j,k

‖φ∗‖ with ‖φ∗‖2 = �x�y
M−1∑
j=1

N−1∑
k=1

|φ∗
j,k|2, (3.17)

φ0
j,k = φ0(x j, yk), j = 0,1, . . . , M, k = 0,1, . . . , N. (3.18)
In the discretization (3.16), at each time step, a linear system
has to be solved. Here it is solved iteratively by introducing a sta-
bilization term with constant coefficients [28], i.e.,

φ
∗,m+1
j,k − φn

j,k

�t
=

(
1

2
∇2

h − α

)
φ

∗,m+1
j,k + Gm

j,k, (3.19)

where m defines the iteration step, the term

Gm
j,k = (

α − V 2(x j, yk) − β2
∣∣φn

j,k

∣∣2 + ΩLh
)
φ

∗,m
j,k ,

and α � 0 is the stabilization parameter chosen as α = 1
2 (bmax +

bmin) with

bmax = max
j,k

(
V 2(x j, yk) + β2

∣∣φn
j,k

∣∣2)
,

bmin = min
j,k

(
V 2(x j, yk) + β2

∣∣φn
j,k

∣∣2)
.

Taking the discrete Fourier transform at both sides of (3.19), we
obtain

̂
φ

∗,m+1
p,q − φ̂n

p,q

�t
= −

(
α + 1

2

(
μ2

p + λ2
q

)) ̂
φ

∗,m+1
p,q + Ĝm

p,q.

Solving the above equation, we get

̂
φ

∗,m+1
p,q = 2

2 + �t(2α + μ2
p + λ2

q)

(
φ̂n

p,q + �t Ĝm
p,q

)
,

for p = −M/2, . . . , M/2 − 1 and q = −N/2, . . . , N/2 − 1.

3.3. Backward/forward Euler spectral discretization

In practice, in order to avoid solving the linear system (3.19)
iteratively, one can also use the backward/forward Euler scheme
for linear/nonlinear terms in time derivatives, i.e. the gradient
flow (3.13) can be discretized as

φ∗
j,k − φn

j,k

�t
= 1

2
∇2

h φ∗
j,k − (

V 2(x j, yk) + β2
∣∣φn

j,k

∣∣2 − ΩLh
)
φn

j,k,

(3.20)

for 1 � j � M − 1 and 1 � k � N − 1.
Similarly, to efficiently solve (3.20), a stabilization term α can

be introduced, and at each time step the resulting linear system is
solved by the direct Poisson solver via discrete fast Fourier trans-
form. Thus the memory cost is O (MN) and the computational cost
per time step is O (MN ln(MN)).

4. Numerical results in 2D

In this section, we report numerical results for vortex lattices of
condensate ground state in 2D rotating BEC with strong repulsive
interaction and different external potentials. The converged solu-
tion of the normalized gradient flow (3.13)–(3.15) is obtained by
requiring that

max
j,k

|φn+1
j,k − φn

j,k|
�t

< ε = 10−6. (4.1)

Different initial data φ0(x) in (3.15) are tested in order to trigger
the lowest energy of the converged solution [16,28]. In general, we
choose φ0(x) as a superposition of the ground state and a cen-
tral vortex state with winding number m = 1 of non-rotating BEC
which has the same interaction strength as that used in (3.13)
[16,28]. The computational domain is chosen as a square Ωx =
[−16,16] × [−16,16]. A refined grid with 513 × 513 nodes is used,
and our numerical experiments show that it is sufficient to achieve
grid independent solutions. The time step is chosen as �t = 0.005.
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Fig. 1. Vortex lattices of condensate ground state in rotating BECs with a harmonic
potential and β2 = 100. a) Symmetric trap with γy = 1; b) asymmetric trap with
γy = 1.5.

Fig. 2. Vortex lattices of condensate ground state in rotating BECs with a har-
monic potential and strong repulsive interaction β2 = 8000. a) Symmetric trap with
γy = 1; b) asymmetric trap with γy = 2.

4.1. For harmonic potential

In rotating BECs with a harmonic potential, the condensate
ground state exists only when |Ω| < γmin := min{1, γy} [12,16]. If
|Ω| > γmax := max{1, γy}, there is no ground state because in this
case the centrifugal force caused by the angular rotation is very
large, so that it can compensate the trapping force and prevent
the condensate from creating a stable state. Without loss of gener-
ality, we assume that γy � 1 and study the case of Ω < 1 in the
following computations.

Figs. 1–2 display vortex lattice structures of condensate ground
state for different parameters Ω , β2 and γy . We find that the
ground state in a harmonic potential is a triangular lattice com-
posed of a number of single vortices with winding number m = 1,
which confirms the theoretical prediction in [33]. The number of
vortices depends on the parameters β2, Ω and γy . For fixed γy ,
the increase either in β2 or in |Ω| will cause more vortices in the
lattice. On the other hand, for fixed β2 and Ω , the larger the fre-
Fig. 3. Vortex lattices of condensate ground state in rotating BECs with a harmonic-
plus-optical lattice potential for d = 2 and κ = π

2 in (2.10).

Fig. 4. Vortex lattices of condensate ground state in rotating BECs with a harmonic-
plus-optical lattice potential for d = 2 and V 0 = 2.5 in (2.10).

quency γy , the smaller the number of vortices. Also, we find that
the number of vortices in a symmetric potential (i.e. γy = 1) is
much larger than that in an asymmetric potential (i.e. γy �= 1).

In addition, with the increasing of the number of vortices, the
lattice becomes much denser, and thus to capture the feature of
each vortex, the spatial resolution must be high enough. Due to
its spectral accuracy in space, our methods can resolve the lattice
structures very well. While the low-order finite difference meth-
ods have difficulties, especially in the regime of strong repulsive
interaction [25].

4.2. For harmonic-plus-optical lattice potential

To study the condensate ground state of rotating BEC with an
oscillating potential, we use a harmonic-plus-optical lattice po-
tential defined in (2.10). Figs. 3–4 show the numerical results for
β2 = 200 and Ω = 0.9.

From Fig. 3, we see that if κ is fixed and V 0 is small, the vor-
tex lattice is of square structure, which is different from that in
the harmonic potential (cf. Figs. 1 and 2). When V 0 becomes large,
there is no vortex in the condensate ground state any more be-
cause of the strong confinement of the optical wells. Fig. 4 shows
that for small and fixed V 0, the condensate ground state is a
vortex lattice having many single vortices located in the optical
wells. With κ increasing, the effect of the optical lattice becomes
insignificant, and eventually when κ becomes large enough, the
condensate ground state in a harmonic-plus-optical lattice poten-
tial has the similar structure to that in a harmonic potential.
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Fig. 5. Vortex lattices of condensate ground state in rapid rotating BECs with a harmonic-plus-quartic potential and β2 = 1000.
4.3. For harmonic-plus-quartic potential

As mentioned in Section 4.2, the harmonic potential is not tight
enough when the rotational speed Ω becomes very large. Thus
to study the condensate ground state in rapid rotating BECs, one
possible way is to apply a stiffer potential, e.g., the harmonic-plus-
quartic potential in (2.9).

For β2 = 1000, Fig. 5 shows the numerical results in a harmonic-
plus-quartic potential with α = 1.2 and κ = 0.3, and Fig. 6 plots
the energy Eβ2,Ω(φ) and angular momentum expectation 〈Lz〉(φ)

of the condensate ground state versus the rotation speed Ω , where
the angular momentum expectation is defined as

〈Lz〉(φ) =
∫
R2

φ∗Lzφ dx = i

∫
R2

φ∗(y∂x − x∂y)φ dx. (4.2)

From them, we see that for small Ω , the condensate ground state
is a vortex lattice having many single vortices. With the increase
of Ω , the number of vortices increases, but the density at the con-
densate center decreases very fast. When the rotating speed Ω

becomes large enough, the atoms are completely ‘thrown’ out of
the center due to the large centrifugal force, so that the density
at the condensate center becomes zero. Thus in this case, the con-
densate ground state is a giant ‘hole’ surrounded by a number of
single vortices (cf. Fig. 5). If the speed Ω increases further, both
the size of the hole and the number of single vortices increase.
However, the width of the annulus containing single vortices be-
comes smaller because of the competition between the forces from
the angular rotation and the potential confinement.

In addition, Fig. 7 depicts numerical results for strong repul-
sive interaction case with β2 = 10 000. Comparing Figs. 5 and 7,
we find that the larger β2 can introduce much more vortices in
the condensate ground state, which makes the density of the lat-
tice very large. Again, in this case the high spatial resolutions are
strongly demanded.

4.4. Dynamics of the normalized gradient flow

In order to know the formation of vortex lattices, in this sec-
tion we study the time evolution of the normalized gradient flow
(3.13)–(3.15). A harmonic-plus-quartic potential with α = 1.2 and
κ = 0.3 is applied, and the other parameters are set as β2 = 1000
and Ω = 2.5. The initial data φ0(x) in (3.15) is chosen as the
Thomas–Fermi approximate state [23].
Fig. 6. Energy and angular momentum expectation of condensate ground state ver-
sus rotating speed Ω when β2 = 1000.

Fig. 7. Vortex lattices of condensate ground state in rapid rotating BEC with a
harmonic-plus-quartic potential and β2 = 10 000.

Fig. 8 shows the time evolution of the density |φ|. From it, we
see that during the time evolution, the boundary of the conden-
sate becomes unstable, and the density at the condensate center
decreases very fast to be zero. As a result, a central ‘ring’ with high
density is formed at time t = 0.24. At the same time, a number of
vortices enter the ring from both the inner and outer boundaries.
With the increase of the vortex number, the repulsive interactions
between vortices become significant, which push the vortices apart
from the each other. Eventually, the competition between the ro-
tating force and the interacting force makes a stable vortex lattice
which is a critical point of the energy functional Eβ2,Ω(φ) in (2.11).
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Fig. 8. Contour plots of the density |φ| in time evolution of the normalized gradient flow (3.13)–(3.15) to show the formation of vortex lattices in a harmonic-plus-quartic
potential.
In addition, Fig. 9 shows time evolution of the energy Eβ2,Ω(φ)

and the angular momentum expectation 〈Lz〉(φ) for time t ∈ [0,3].
After time t = 3, the changes on both of them are slight, so we
omit the plot for t ∈ [3,87.53] for simplicity. From Fig. 9, we find
that in a short time, i.e. t ∈ [0,0.5], the energy decreases and the
angular momentum expectation increases dramatically because of
the appearance of a large number of vortices. After it, they evolve
slowly which corresponds to the rearrangement of the vortices.

5. Numerical results in 3D

In this section, we report numerical results for 3D rotating BECs
with strong repulsive interaction. Similar to the 2D case, the initial
data in (3.15) is taken as a superposition of the ground state and a
central vortex line of non-rotating BECs. The computational domain
is defined in a box Ωx = [−8,8] × [−8,8] × [−8,8]. A refined grid
with 257 × 257 × 129 nodes is used, which is sufficient to obtain
grid independent solutions. The time step is chosen as �t = 0.01.

Fig. 10 shows 3D vortex lattices of condensate ground state in
a symmetric harmonic potential with γy = γz = 1 and β3 = 400.
From it and our additional computations not shown here, we find
that the ground state in 3D rotating BECs is composed of parallel
vortex lines. Increasing in either β3 or Ω can cause more vortex
lines generated into the condensate.

Fig. 11 displays the numerical results in 3D rotating BECs with
a harmonic-plus-quartic potential, where the parameters are cho-
sen as α = 1.2, κ = 0.3, γz = 1 and β3 = 100. Similar to the 2D
case, when the rotation speed is very large, the density at the
condensate center becomes zero, so that a giant ‘hole’ appears
at the center. There exists a critical rotation speed Ωcr(β3,α,κ).
If Ω > Ωcr(β3,α,κ) but close to the critical rotation speed, the
ground state is composed of a giant hole surrounded by many
single vortex lines, e.g., the case of Ω = 1.4 in Fig. 11. When Ω
Fig. 9. Time evolution of the energy Eβ2,Ω (φ) and the angular momentum expecta-
tion 〈Lz〉(φ) of the normalized gradient flow (3.13)–(3.15).

becomes much larger than Ωcr(β3,α,κ), single vortex lines disap-
pear and only a big hole is left at the center of the condensate;
see Fig. 11 with Ω = 1.8.

6. Conclusion

We developed an efficient method to compute vortex lattices
of condensate ground state in rapid rotating BECs. This method
has spectral accuracy in space, so it can be used especially for
the strong repulsive interaction regime which is never reached by
the standard finite difference methods proposed in the literature.
The condensate ground states in 2D rotating BECs were studied
in detail for different external trapping potentials. In addition, the
3D results were also presented for harmonic and harmonic-plus-
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Fig. 10. Isosurface plots (left) and surface plots at z = 0 (right) for the vortex lattices
of condensate ground state in 3D rotating BECs with a harmonic potential and β3 =
400.

Fig. 11. Isosurface plots (left) and surface plots at z = 0 (right) for the vortex lat-
tices of condensate ground state in 3D rotating BECs with a harmonic-plus-quartic
potential with β3 = 100.

quartic potentials. Some conclusions were drawn from our numer-
ical results.

In a harmonic potential, the vortex lattice of condensate ground
state is of the triangular structure, and it is composed of many sin-
gle vortices. It was found that for a fixed rotation speed Ω , the
lattice in a symmetric potential (i.e. γy = γx = 1) contains more
vortices than that in an asymmetric potential with γy > γx = 1.
This is because in an asymmetric potential, the tighter confinement
in one direction prevents the creation of vortices in that direction.
The vortex lattice in the harmonic-plus-optical lattice is more com-
plicated, and it depends on the height of optical wells and also on
the distance between two neighboring wells.

The structure of vortex lattices in rapid rotating BECs with
harmonic-plus-quartic potential is much different from that in a
harmonic potential. For large rotation speed Ω , the density at the
condensate center is zero and the condensate ground state is an
annulus containing a number of vortices. The larger the rotation
speed Ω , the smaller the width of the annulus.
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