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Abstract

In this paper, we derive the analytical solution for a second-order ordinary differential system which governs the motion of the
center of mass in the dynamics of a stationary state with its center shifted. A leap-frog Fourier pseudospectral (LFFP) method
is presented for efficient and accurate numerical simulations of the Gross–Pitaevskii equation (GPE) with an angular momentum
rotation term. Different motion patterns for the center of mass are observed and classified from the analytical solution and confirmed
by directly simulating the GPE. To show the effectiveness of the LFFP method, the dynamics of vortex lattices are studied, and the
numerical results demonstrate the efficiency and extremely high resolution of our method.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Since the realization of Bose–Einstein condensation (BEC) in dilute bosonic atomic gases [2], much attention has
been focused on its dynamical phenomena associated with superfluidity. One remarkable feature of a superfluid is the
appearance of quantized vortices. Recently, several groups have observed quantized vortices in rotating BEC [11,10],
by imposing a rotating laser beam on the magnetic trap to create an anisotropic rotating harmonic potential.

We consider the dimensionless Gross–Pitaevskii equation (GPE) in d-dimensions (d = 2,3) [6,3]:

i∂tψ(x, t) = −1

2
∇2ψ + Vd(x)ψ + βd |ψ |2ψ − ΩLzψ, x ∈ R

d, t > 0, (1.1)

ψ(x,0) = ψ0(x), x ∈ R
d, with ‖ψ0‖2 :=

∫
Rd

∣∣ψ0(x)
∣∣2 dx = 1, (1.2)

where ψ(x, t) is the macroscopic wave function, Lz = −i(x∂y − y∂x) is the z-component of the angular momentum,
Ω is the angular speed of the laser beam, βd is a constant characterizing the particle interactions and the external
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harmonic oscillator potential Vd(x) = (γ 2
x x2 + γ 2

y y2)/2 in two dimensions (2D), and resp. in 3D Vd(x) = (γ 2
x x2 +

γ 2
y y2 + γ 2

z z2)/2 with γx > 0, γy > 0 and γz > 0 constants.
The main aim of this paper is: (i) to derive the analytical solution for the second-order ODE system which governs

the motion of the center of mass in the dynamics of a stationary state with its center shifted, (ii) to identify typical
motion patterns for the center of mass based on different trapping frequencies and angular momentum rotation speed,
and (iii) to propose an efficient method for simulating the dynamics of rotating BEC and apply it to verify different
motion patterns. In fact, in order to study effectively the dynamics of BEC, especially in the strong repulsive interaction
regime, i.e. βd � 1 in (1.1), an efficient and accurate numerical method is one of the key issues. For non-rotating
BEC, i.e. Ω = 0 in (1.1), there have been many numerical methods reported in the literature [4,7,5,12,8]. While for
rotating BEC, the available numerical methods are very limited [12,8,3], and most of them have low-order accuracy
in space. Recently, Bao et al. [3] proposed an efficient and accurate time-splitting type method, in which the polar
coordinate or cylindrical coordinate is adopted so as to make the coefficient of the angular momentum rotation term a
constant. In this paper, we try the leap-frog Fourier pseudospectral (LFFP) method in which the Cartesian coordinate
is adopted. Both methods are time reversible just as the GPE (1.1) does. Of course, each one has its own advantages
and disadvantages. The former is unconditionally stable, implicit in 1D and conserves the total density. It is of spectral
accuracy in transverse direction and usually second or fourth-order accuracy in radial direction. The latter is explicit,
of spectral accuracy in all directions and easy to program. It is stable under a stability condition. Due to its fully
spectral resolution in space, the LFFP method may resolve better the dynamics of vortex lattices in rotating BEC,
especially in the regime with strong repulsive interaction, i.e. βd � 1, and large angular momentum rotation speed,
i.e. |Ω| ≈ min{γx, γy}, where a large number of vortices appear in the condensate and thus spatial resolution is one of
the key issues.

The paper is organized as follows. In Section 2, we review the second-order ODE system for the motion of the
center of mass, and solve it analytically. In Section 3, we propose the leap-frog Fourier pseudospectral (LFFP) method.
Finally, some conclusions are drawn in Section 4.

2. Analytical solutions for the center of mass

Without loss of generality, in this section, we assume γx = 1 and γx � γy . Let φe(x) be a stationary state solution
of the GPE (1.1) with a chemical potential μe, i.e. (μe,φe) satisfying

μeφe(x) = −1

2
∇2φe + Vd(x)φe + βd |φe|2φe − ΩLzφe, with ‖φe‖2 = 1. (2.1)

If the initial data ψ0(x) in (1.2) is chosen as a stationary state with its center shifted, i.e.

ψ0(x) = φe(x − x0), x ∈ R
d, (2.2)

where x0 is a given point in R
d , one can construct an exact solution of the GPE (1.1) with a harmonic oscillator

potential [9,7,3],

ψ(x, t) = φe

(
x − x(t)

)
e−iμet eiw(x,t), x ∈ R

d, t � 0, (2.3)

where w(x, t) is a linear function of x and x(t) satisfies the following second-order ODE system [3]:

ẍ(t) − 2Ωẏ(t) + (
γ 2
x − Ω2)x(t) = 0, (2.4)

ÿ(t) + 2Ωẋ(t) + (
γ 2
y − Ω2)y(t) = 0, t � 0, (2.5)

x(0) = x0, y(0) = y0, ẋ(0) = Ωy0, ẏ(0) = −Ωx0, (2.6)

in 2D; if in 3D, another ODE needs to be added:

z̈(t) + γ 2
z z(t) = 0, z(0) = z0, ż(0) = 0. (2.7)

This kind of exact solution (2.3) can be used, in particular, in the benchmark and validation of numerical algorithms
for the time-dependent GPE. It has been studied in the literature for non-rotating BEC [9,7] and rotating BEC [3].
The physical interpretation of the solution is that it is a soliton-type solution in high dimensions. The experimental
realization for the solution is to shift the magnetic trapping center from the origin to the position −x0, i.e. Vd(x) →
Vd(x + x0).
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From (2.1), (2.3) and changing of variables, we get

〈x〉(t) :=
∫
Rd

x
∣∣ψ(x, t)

∣∣2 dx =
∫
Rd

x
∣∣φe

(
x − x(t)

)∣∣2 dx =
∫
Rd

(
x + x(t)

)∣∣φe(x)
∣∣2 dx = x(t), t � 0. (2.8)

This implies that the dynamics of the center of mass is the same as that of x(t), i.e. satisfying the ODE system
(2.4)–(2.7). It is easy to see that the solution of (2.7) is

z(t) = z0 cos(γzt), t � 0, (2.9)

and thus z(t) is a periodic function with period Tz = 2π/γz. Furthermore, when Ω �= 0, we can divide both sides of
(2.4) by 2Ω to get

ẏ(t) = 1

2Ω

(
ẍ(t) + (

γ 2
x − Ω2)x(t)

)
, t � 0. (2.10)

On the other hand, differentiating (2.5) with respect to t , we obtain

y(3)(t) + 2Ωẍ(t) + (
γ 2
y − Ω2)ẏ(t) = 0, t � 0. (2.11)

Plugging (2.10) into (2.11), we get the following fourth-order ODE for x(t),

x(4)(t) + (
γ 2
x + γ 2

y + 2Ω2)ẍ(t) + (
γ 2
x − Ω2)(γ 2

y − Ω2)x(t) = 0, t � 0. (2.12)

The characteristic equation of (2.12) is

λ4 + (
γ 2
x + γ 2

y + 2Ω2)λ2 + (
γ 2
x − Ω2)(γ 2

y − Ω2) = 0. (2.13)

In the following subsections, we discuss the solutions of the ODE system (2.4)–(2.6) in different parameter regimes
of trapping frequencies and angular rotation speed Ω .

2.1. In a non-rotating BEC

For a non-rotating BEC, i.e. Ω = 0 in (1.1), the second-order ODE system (2.4)–(2.6) collapses to

ẍ(t) + γ 2
x x(t) = 0, ÿ(t) + γ 2

y y(t) = 0, t � 0, (2.14)

x(0) = x0, y(0) = y0, ẋ(0) = ẏ(0) = 0. (2.15)

It is straightforward to see that the solution of (2.14), (2.15) is

x(t) = x0 cos(γxt), y(t) = y0 cos(γyt), t � 0, (2.16)

which implies that both x(t) and y(t) are periodic functions with periods Tx = 2π/γx and Ty = 2π/γy , respectively.
Fig. 1 displays the time evolution of the center x(t) in 2D with x0 = (1,1)T for different γx and γy , and Fig. 2

shows similar results in 3D with x0 = (1,1,1)T . From Figs. 1 and 2, we can draw the following conclusions for
the motion of the center x(t) in non-rotating BEC: (i) Each component of the center x(t) is a periodic function
with the same frequency as the trapping frequency in that direction (cf. Fig. 1). (ii) In 2D with a radially symmetric
trap or 3D with a spherically symmetric trap, the center moves like a pendulum with period T = 2π/γx , and its
trajectory is a straight segment (cf. Figs. 1(a) and 2(a)). (iii) In 2D, if γy/γx is a rational number, i.e. γy/γx =
q/p with q and p positive integers and no common factor, then the center moves periodically with period 2pπ

(cf. Fig. 1(b)). On the other hand, if γy/γx is an irrational number, the center moves chaotically in the rectangle
Ωx = [−|x0|, |x0|]× [−|y0|, |y0|], and the envelope of its trajectory is the boundary of the rectangle Ωx (cf. Fig. 1(c)).
(iv) In 3D, if both γy/γx and γz/γx are rational numbers, the center moves periodically (cf. Fig. 2(b)); if both of
them are irrational numbers, the center moves in a 3D box (cf. Fig. 2(d)); otherwise, it moves in a 2D rectangle (cf.
Fig. 2(c)).
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Fig. 1. Motion of the center x(t) in 2D for a non-rotating BEC. Left: trajectory x(t) for t ∈ [0,50]; Right: time evolution of x(t) (solid line) and
y(t) (dash line), where ‘∗’ is obtained by directly simulating the GPE (1.1). (a) γx = γy = 1; (b) γx = 1, γy = 8; (c) γx = 1, γy = 2π .

Fig. 2. Trajectory of the center x(t) in 3D for a non-rotating BEC. (a) γx = γy = γz = 1; (b) γx = γy = 1, γz = 4; (c) γx = γy = 1, γz = 2π ;
(d) γx = 1, γy = √

2, γz = π .
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2.2. In a rotating BEC with an isotropic potential

For a rotating BEC with an isotropic potential, i.e. Ω �= 0 and γx = γy , we have the following solutions for the
second-order ODE system (2.4)–(2.6):

Lemma 2.1. If Ω �= 0 and γx = γy in (2.4)–(2.6), the solutions x(t) and y(t) for the motion of the center are

x(t) = x0

2

[
cos(at) + cos(bt)

] + |Ω|y0

2Ω

[
sin(at) − sin(bt)

]
, (2.17)

y(t) = y0

2

[
cos(at) + cos(bt)

] + |Ω|x0

2Ω

[− sin(at) + sin(bt)
]
, t � 0, (2.18)

where a = γx + |Ω| and b = γx − |Ω|. Furthermore, we can get the distance between the center of mass and the trap
center is a periodic function with period T = π/γx , i.e.∣∣x(t)

∣∣ :=
√

x2(t) + y2(t) =
√

x2
0 + y2

0

∣∣ cos(γxt)
∣∣, t � 0. (2.19)

Proof. When γx = γy , the characteristic Eq. (2.13) becomes

λ4 + 2
(
γ 2
x + Ω2)λ2 + (

γ 2
x − Ω2)2 = 0. (2.20)

Solving (2.20), we get its roots as

λ1,2 = ±i
(
γx + |Ω|) = ±ai, λ3,4 = ±i

(
γx − |Ω|) = ±bi. (2.21)

Thus the general solution of the ODE (2.12) is

x(t) = c1 cos(at) + c2 sin(at) + c3 cos(bt) + c4 sin(bt), t � 0, (2.22)

where c1, c2, c3 and c4 are constants. Plugging (2.22) into (2.10) and then integrating with respect to t , we get the
general solution for y(t),

y(t) = −|Ω|
Ω

[
c1 sin(at) − c2 cos(at)

] + |Ω|
Ω

[
c3 sin(bt) − c4 cos(bt)

] + c5, t � 0. (2.23)

Taking t = 0 in (2.22) and (2.23), and noticing (2.4) and (2.6), we have

c5 = 0, c1 + c3 = x0, ac2 + bc4 = Ωy0,
|Ω|
Ω

(c2 − c4) = y0,
|Ω|
Ω

(bc3 − ac1) = −Ωx0.

Solving the above equations, we get

c1 = c3 = x0

2
, c2 = −c4 = Ωy0

2|Ω| , c5 = 0. (2.24)

Thus the solution (2.17), (2.18) is a combination of (2.22), (2.23) and (2.24). Furthermore, from (2.17), (2.18), we can
obtain∣∣x(t)

∣∣2 = x(t)2 + y(t)2

=
[
x0

2

(
cos(at) + cos(bt)

) + |Ω|y0

2Ω

(
sin(at) − sin(bt)

)]2

+
[
y0

2

(
cos(at) + cos(bt)

) + |Ω|x0

2Ω

(− sin(at) + sin(bt)
)]2

= x2
0

4

[
2 + 2 cos

(
(a + b)t

)] + y2
0

4

[
2 + 2 cos

(
(a + b)t

)] = (
x2

0 + y2
0

)
cos2(γxt), t � 0, (2.25)

which gives (2.19) immediately. �
Fig. 3 shows the time evolutions of the center x(t) with γx = γy = 1 and x0 = (1,1)T for different Ω . Fig. 4 depicts

the distance between the center of mass and trap center, i.e. |x(t)|, for different Ω . From Figs. 3 and 4, we can draw
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Fig. 3. Motion of the center x(t) in 2D for a rotating BEC. Left: trajectory x(t) for t ∈ [0,100]; Right: time evolution of x(t) (solid line) and y(t)

(dash line), where ‘∗’ is obtained by directly simulating the GPE (1.1). (a) Ω = 1/5; (b) Ω = 4/5; (c) Ω = 1; (d) Ω = 3/2; (e) Ω = 6; (f) Ω = π .

the following conclusions for the motion of the center x(t) in rotating BEC with an isotropic potential: (i) For any
angular rotation speed Ω , the distance between the center of mass and the trap center is a periodic function with a
period T = π/γx (cf. Fig. 4). (ii) When Ω is a rational number, i.e. |Ω| = q/p with q and p positive integers and no
common factor, the center moves periodically with a period T = pπ if both q and p are odd integers (cf. Fig. 3(a)
and (c)); otherwise T = 2pπ (cf. Fig. 3(b), (d) and (e)). Furthermore, the graph of its trajectory is unchanged under
a rotation of the angle θ = 2mπω with m an integer and ω = 2π/T the angular frequency of the motion (cf. Fig.
3(a)–(e)). (iii) When Ω is an irrational number, the center moves chaotically (cf. Fig. 3(f)), but the envelope of its
trajectory is a circle centered at the origin with the radius r = |x0| (cf. Fig. 3(f)).

2.3. In a rotating BEC with an anisotropic potential

For a rotating BEC with an anisotropic potential, i.e. Ω �= 0 and γx �= γy , we present the analytical solutions of
(2.4)–(2.6) in four different cases: (a) |Ω| = γx ; (b) |Ω| = γy ; (c) 0 < |Ω| < γx or |Ω| > γy ; (d) γx < |Ω| < γy . For
|Ω| = γx < γy , we have

Lemma 2.2. If |Ω| = γx < γy in (2.4)–(2.6), the solutions x(t) and y(t) for the motion of the center are

x(t) = x0

a2

[(
γ 2
y + Ω2) + 2Ω2 cos(at)

] + Ωy0

a2

[
−(

γ 2
y − Ω2)t + 2(γ 2

y + Ω2)

a
sin(at)

]
, (2.26)

y(t) = y0 [
2Ω2 + (

γ 2
y + Ω2) cos(at)

] − Ωx0 sin(at), t � 0; (2.27)

a2 a
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Fig. 3. (continued)

Fig. 4. Distance between the center of mass and the trap center, i.e. |x(t)|, for different Ω , where ‘∗’ is obtained by directly simulating the GPE
(1.1).

where a =
√

γ 2
y + 3Ω2. This implies that the center moves on an ellipse when y0 = 0, and moves to infinity when

y0 �= 0.

Proof. When |Ω| = γx < γy , the ODE system (2.4), (2.5) collapses to

ẍ(t) − 2Ωẏ(t) = 0, (2.28)

ÿ(t) + 2Ωẋ(t) + (
γ 2
y − Ω2)y(t) = 0, t > 0. (2.29)
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Differentiating (2.29) with respect to t and noticing (2.28), we obtain

y(3)(t) + (
γ 2
y + 3Ω2)ẏ(t) = 0, t � 0. (2.30)

The characteristic equation of (2.30) is

λ3 + (
γ 2
y + 3Ω2)λ = 0. (2.31)

Solving (2.31), we obtain

λ1 = 0, λ2,3 = ±i

√
γ 2
y + 3Ω2 = ±ai, (2.32)

which imply that the general solution of the ODE (2.30) has the form

y(t) = c1 + c2 cos(at) + c3 sin(at), (2.33)

where c1, c2 and c3 are constants. Plugging (2.33) into (2.28) and integrating with respect to t , we obtain the general
solution for x(t) as

x(t) = − (γ 2
y − Ω2)c1

2Ω
t + 2Ω

a

[
c2 sin(at) − c3 cos(at)

] + c4 (2.34)

with c4 a constant. Taking t = 0 in (2.33) and (2.34), and noticing (2.6), we have

c4 − 2Ω

a
c3 = x0, 2Ωc2 − γ 2

y − Ω2

2Ω
c1 = Ωy0, c1 + c2 = y0, ac3 = −Ωx0.

Solving the above equations, we obtain

c1 = 2Ω2y0

a2
, c2 = (γ 2

y + Ω2)y0

a2
, c3 = −Ωx0

a
, c4 = (γ 2

y + Ω2)x0

a2
. (2.35)

Thus the solution (2.26), (2.27) is a combination of (2.33), (2.34) and (2.35). �
Similarly for γx < |Ω| = γy , we have

Lemma 2.3. If γx < γy = |Ω| in (2.4)–(2.6), the solutions x(t) and y(t) for the motion of the center are

x(t) = x0

a2

[
2Ω2 + (

γ 2
x + Ω2) cos(at)

] + Ωy0

a
sin(at), t � 0, (2.36)

y(t) = y0

a2

[(
γ 2
x + Ω2) + 2Ω2 cos(at)

] + Ωx0

a2

[(
γ 2
x − Ω2)t − 2(γ 2

x + Ω2)

a
sin(at)

]
, (2.37)

where a = √
γ 2
x + 3Ω2. Again this implies that the center moves on an ellipse when x0 = 0, and moves to infinity

when x0 �= 0.

Proof. Follows the line of the analogous results in Lemma 2.2. �
Fig. 5 plots the time evolution of the center x(t) with Ω = γx = 1 < γy = 2 for different x0. From it and our

additional results, we can get: (i) When |Ω| = γx < γy , if y0 �= 0, the trajectory of the center is a spiral coil going to
infinity in x-direction (cf. Fig. 5(a)), while if y0 = 0, the trajectory is an ellipse (cf. Fig. 5(b)). (ii) When γx < γy = |Ω|,
if x0 �= 0, the trajectory is a spiral coil going to infinity in y-direction; if x0 = 0, it is an ellipse.

If Ω �= 0, γx or γy , we denote δ1 = (γ 2
x + γ 2

y + 2Ω2)/2, δ2 =
√

δ2
1 − (γ 2

x − Ω2)(γ 2
y − Ω2), a = √|δ1 − δ2| and

b = √
δ1 + δ2. When 0 < |Ω| < γx or |Ω| > γy , we have 0 < δ2 < δ1. Thus the four roots of the characteristic

equation (2.13) are

λ1,2 = ±i
√

δ1 − δ2 = ±ai, λ3,4 = ±i
√

δ1 + δ2 = ±bi. (2.38)

Following the procedure in the proof of Lemma 2.1, after a detailed computation, we get the solution of the ODE
system (2.4)–(2.6) in this case:
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Fig. 5. Motion of the center x(t) in 2D for a rotating BEC. Left: trajectory x(t) for t ∈ [0,30]; Right: time evolution of x(t) (solid line) and y(t)

(dash line). (a) x0 = (1,1)T ; (b) x0 = (1,0)T .

Lemma 2.4. If γx < γy , and 0 < |Ω| < γx or |Ω| > γy , we have the solution x(t) and y(t) of the ODE system
(2.4)–(2.6) as

x(t) = c1 cos(at) + c2 sin(at) + c3 cos(bt) + c4 sin(bt), (2.39)

y(t) = c5 cos(at) + c6 sin(at) + c7 cos(bt) + c8 sin(bt), t � 0, (2.40)

where

c1 = (γ 2
x + Ω2 − b2)x0

a2 − b2
, c2 = aΩ(γ 2

x − Ω2 + b2)y0

(γ 2
x − Ω2)(a2 − b2)

,

c3 = − (γ 2
x + Ω2 − a2)x0

a2 − b2
, c4 = −bΩ(γ 2

x − Ω2 + a2)y0

(γ 2
x − Ω2)(a2 − b2)

,

c5 = − (γ 2
x − Ω2 − a2)(γ 2

x − Ω2 + b2)y0

2(γ 2
x − Ω2)(a2 − b2)

, c6 = (γ 2
x − Ω2 − a2)(γ 2

x + Ω2 − b2)x0

2aΩ(a2 − b2)
,

c7 = (γ 2
x − Ω2 + a2)(γ 2

x − Ω2 − b2)y0

2(γ 2
x − Ω2)(a2 − b2)

, c8 = − (γ 2
x − Ω2 − b2)(γ 2

x + Ω2 − a2)x0

2bΩ(a2 − b2)
.

This implies that the graph of the trajectory is a bounded set.

Similarly, when γx < |Ω| < γy , we have δ2 > δ1, and the four roots of the characteristic equation (2.13) are

λ1,2 = ±√
δ2 − δ1 = ±a, λ3,4 = ±i

√
δ1 + δ2 = ±bi. (2.41)

Following the procedure in the proof of Lemma 2.1, after a detailed computation, we get the solution of the ODE
system (2.4)–(2.6) in this case:

Lemma 2.5. If γx < |Ω| < γy , we have the solution x(t) and y(t) of the ODE system (2.4)–(2.6) as

x(t) = d1e
at + d2e

−at + d3 cos(bt) + d4 sin(bt), (2.42)

y(t) = d5e
at + d6e

−at + d7 cos(bt) + d8 sin(bt), t � 0, (2.43)
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Fig. 6. Motion of the center x(t) in 2D for a rotating BEC. Left: trajectory x(t) for t ∈ [0,100]; Right: time evolution of x(t) (solid line) and y(t)

(dash line). (a) Ω = 1/2, γx = 1, γy = 2; (b) Ω = 4, γx = 1, γy = 2; (c) Ω = 1/2, γx = 1, γy = π ; (d) Ω = 4, γx = 1, γy = π .

where

d1 = 1

2
(c1 − c2), d2 = −1

2
(c1 + c2), d3 = c3, d4 = c4, d7 = c7, d8 = c8,

d5 = (γ 2
x − Ω2 + a2)

4aΩ
(c1 − c2), d6 = (γ 2

x − Ω2 + a2)

4aΩ
(c1 + c2),

with c1, . . . , c8 constants defined in Lemma 2.4. From the above solution, we can see that if c1 = c2, i.e. y0 =
(γ 2

x −Ω2)(γ 2
x +Ω2−b2)x0

aΩ(γ 2
x −Ω2+b2)

, the graph of the trajectory is a bounded set; otherwise, the center will move to the infinity

exponentially fast and satisfies

lim
t→∞

y(t)

x(t)
= d5

d1
= (γ 2

x − Ω2 + a2)

2aΩ
. (2.44)
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Fig. 7. Motion of the center x(t) in 2D for a rotating BEC with 1 = γx < Ω = 1.5 < γy = 2. Left: trajectory x(t) for t ∈ [0,50]; Right: time
evolution of x(t) (solid line) and y(t) (dash line). (a) x0 = (1,1.3424)T ; (b) x0 = (1,1)T .

Fig. 6 plots the time evolution of the center x(t) with x0 = (1,1)T for different γx < γy and Ω which satisfy
|Ω| < γx or |Ω| > γy . Fig. 7 shows similar results with 1 = γx < |Ω| = 1.5 < γy = 2 for different x0. From Figs. 6
and 7, we can draw the following conclusions: (i) When γx < γy , and 0 < |Ω| < γx or |Ω| > γy , the center moves

chaotically in a bounded domain (cf. Fig. 6). (ii) When γx < |Ω| < γy , if y0 = (γ 2
x −Ω2)(γ 2

x +Ω2−b2)x0

aΩ(γ 2
x −Ω2+b2)

, the center moves

in a bounded domain (cf. Fig. 7(a)); otherwise it would move to the infinity exponentially fast, and after a short time,

it almost moves along a straight line with slope (γ 2
x −Ω2+a2)

2aΩ
(cf. Fig. 7(b)).

3. Numerical method and results

Due to the trapping potential Vd(x), the solution ψ(x, t) of the GPE (1.1) decays to zero exponentially fast when
|x| → ∞. Thus in practical computation, we can truncate the problem (1.1), (1.2) into a bounded computational
domain Ωx with the homogeneous Dirichlet boundary condition, where in 2D Ωx = [a, b] × [c, d], and respectively
in 3D Ωx = [a, b] × [c, d] × [e, f ] with |a|, b, |c|, d , |e| and f sufficiently large. For simplicity, here we present the
numerical method for 2D case, and generalization to 3D is straightforward.

Choose a time step t > 0 and spatial mesh sizes x = (b − a)/J and y = (d − c)/K with J and K even
integers. Denote the grid points as xj = a + jx and yk = c + ky with 0 � j � J and 0 � k � K , and let ψn

j,k be
the approximation of ψ(xj , yk, tn). Then for n = 1,2, . . . , from time t = tn−1 = (n − 1)t to t = tn+1 = (n + 1)t ,
we can discretize the GPE by the Fourier pseudospectral method in space and the leap-frog scheme in time, i.e. for
1 � j � J − 1 and 1 � k � K − 1,

i
ψn+1

j,k − ψn−1
j,k

2t
= −1

2

(∇2
hψn

)∣∣
j,k

+ V2(xj , yk)ψ
n
j,k + β2

∣∣ψn
j,k

∣∣2
ψn

j,k − Ω
(
Lhψ

n
)∣∣

j,k
, (3.1)

where ∇2
h and Lh, the pseudospectral differential operators approximating the operators ∇2 and Lz respectively, are

defined as

(∇2
hψn

)∣∣
j,k

= −
J/2−1∑

p=−J/2

K/2−1∑
q=−K/2

(
μ2

p + λ2
q

)(
ψ̂n

)
p,q

eiμp(xj −a) eiλq(yk−c), (3.2)

(
Lhψ

n
)∣∣ = xj

(
Dh

yψn
)∣∣ − yk

(
Dh

xψn
)∣∣ , 0 � j � J, 0 � k � K, (3.3)
j,k j,k j,k
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Fig. 8. Contour plots of the density |ψ(x, t)|2 of the vortex lattices at different times.

(
Dh

xψn
)∣∣

j,k
=

J/2−1∑
p=−J/2

K/2−1∑
q=−K/2

μp

(
ψ̂n

)
p,q

eiμp(xj −a) eiλq(yk−c), (3.4)

(
Dh

yψn
)∣∣

j,k
=

J/2−1∑
p=−J/2

K/2−1∑
q=−K/2

λq

(
ψ̂n

)
p,q

eiμp(xj −a) eiλq(yk−c), (3.5)

with

μp = 2pπ

b − a
, p = −J

2
, . . . ,

J

2
− 1; λq = 2qπ

d − c
, q = −K

2
, . . . ,

K

2
− 1,

(
ψ̂n

)
p,q

= 1

JK

J−1∑
j=0

K−1∑
k=0

ψn
j,k e−iμp(xj −a) e−iλq (yk−c).

To compute ψ1
j,k , we apply the modified trapezoidal rule on the interval [0, t1], i.e.

i
ψ

(1)
j,k − ψ0

j,k

t
= −1

2

(∇2
hψ0)∣∣

j,k
+ V2(xj , yk)ψ

0
j,k + β2

∣∣ψ0
j,k

∣∣2
ψ0

j,k − Ω
(
Lhψ

0)∣∣
j,k

,

i
ψ

(2)
j,k − ψ

(1)
j,k

t
= −1

2

(∇2
hψ(1)

)|j,k + V2(xj , yk)ψ
(1)
j,k + β2|ψ(1)

j,k |2ψ(1)
j,k − Ω

(
Lhψ

(1)
)∣∣

j,k
,

ψ1
j,k = 1

2

(
ψ

(1)
j,k + ψ

(2)
j,k

)
, 1 � j � J − 1, 1 � k � K − 1. (3.6)

The leap-frog Fourier pseudospectral (LFFP) discretization (3.1)–(3.5) is explicit and time reversible. It is of spec-
tral accuracy in space and second-order accuracy in time. The total memory requirement is O(JK) and the total
computational cost per time step is O(JK ln(JK)). Following the standard von Neumann analysis, the stability con-
dition is

t <
2(x)2

π2[1 + (x
y

)2] + 2(x)2 maxx∈Ωx[π |Ω|( |x|
x

+ |y|
y

) + V2(x) + β2|ψ(x, t)|2] .

To show the effectiveness of the LFFP method, we apply it to study the dynamics of a quantized vortex lattice with
81 vortices in rotating BEC. The parameters are chosen as d = 2, β2 = 2000, Ω = 0.9, and the initial data in (1.2) is
the ground state [6,3,1] computed numerically with the same parameters and γx = γy = 1. Then at t = 0, we change
the trap frequency by setting γx = γy = 1.5. Fig. 8 shows contour plots of the density |ψ(x, t)|2 at different times.

From Fig. 8, we can see that initially there are 81 quantized vortices in the ground state. During the time evolution,
the lattice shrinks or expands due to the changing of the trapping frequencies. This clearly demonstrates the high
resolution of the LFFP method.

4. Conclusion

We have solved analytically the second-order ordinary differential system which governs the motion of the center
of mass in the dynamics of a stationary state with its center shifted. Based on the analytical solutions, we classified
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different motion patterns of the center and provided some mathematical justifications for the observations in [3] for the
motion. The results from the ODE system were confirmed by directly simulating the GPE with an isotropic potential.
We also presented a leap-frog Fourier pseudospectral (LFFP) method for efficient and accurate simulations of the GPE
in a rotational frame. Our numerical results demonstrated the spectral resolution in space of the LFFP method.
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