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The rich dynamics of quantized vortices governed by the Ginzburg-Landau-Schrödinger

equation (GLSE) is an interesting problem studied in many application fields. Although recent

mathematical analysis and numerical simulations have led to a much better understanding of

such dynamics, many important questions remain open. In this article, we consider numerical

simulations of the GLSE in two dimensions with non-zero far-field conditions. Using two-

dimensional polar coordinates, transversely highly oscillating far-field conditions can be

efficiently resolved in the phase space, thus giving rise to an unconditionally stable, efficient

and accurate time-splitting method for the problem under consideration. This method is also

time reversible for the case of the non-linear Schrödinger equation. By applying this numerical

method to the GLSE, we obtain some conclusive experimental findings on issues such as the

stability of quantized vortex, interaction of two vortices, dynamics of the quantized vortex

lattice and the motion of vortex with an inhomogeneous external potential. Discussions

on these simulation results and the recent theoretical studies are made to provide further

understanding of the vortex stability and vortex dynamics described by the GLSE.

1 Introduction

The Ginzburg-Landau-Schrödinger equation (GLSE) is one of the most studied non-

linear equations in the physics community. It describes a vast variety of phenomena from

non-linear waves to second-order phase transitions, from superconductivity, superfluidity

and Bose-Einstein condensation (BEC) to liquid crystals and strings in the field theory. A

specific form of the GLSE we study here is given by:

(α− iβ)∂tψ(x, t) = ∆ψ +
1

ε2

(
V0(x) − |ψ|2

)
ψ, x ∈ �2, t > 0, (1.1)

ψ(x, 0) = ψ0(x), x ∈ �2, (1.2)

with nonzero far-field conditions

|ψ(x, t)| → 1 (e.g. ψ → eimθ), t � 0, when r = |x| =
√
x2 + y2 → ∞; (1.3)
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here t is time, m ∈ � is a given integer, x = (x, y) ∈ �2 is the Cartesian coordinate vector,

(r, θ) is the polar coordinate system, ψ(x, t) is a complex-valued wave function, V0(x) is

a given real-valued external potential satisfying V0(x) → 1 when |x| → ∞, ε is a positive

constant and α and β are two nonnegative constants satisfying α+ β > 0.

The equation (1.1) covers many non-linear equations arising in various different applic-

ations. For example, when α= 1 and β= 0, it collapses to the non-linear heat equation

(NLHE) [36, 37] or the Ginzburg-Landau equation (GLE). The case of GLE with a

complex order parameter is well known [1, 19, 20, 32] for modelling superconductivity,

while the real-order parameter case corresponds to the so-called Allen-Cahn equation

often used in phase transition studies [21]; when α= 0 and β= 1, it reduces to the non-

linear Schrödinger equation (NLSE) [35, 36, 40] for modelling, for example, superfluidity

or BEC; when α> 0 and β > 0, it is the complex Ginzburg-Landau equation (CGLE) or

the NLSE with a damping term [5], which also arises in the study of the hydrodynamic

instability [2]. When V0(x) ≡ 1, the external potential is uniform; when V0(x) � 1, the

medium is inhomogeneous [6, 25, 26, 34]. When ε= 1, it is the standard GLSE, while for

0<ε � 1, it is the GLSE in the semi-classical regime.

The boundary condition (1.3) allows one to introduce the notation deg ψ, that is, degree

of ψ, as an index (winding number) at ∞ of ψ, considered as a vector field on �2, that is,

deg ψ =
1

2π

∫
|x|=R

d(arg ψ), (1.4)

for R sufficiently large. Based on this, an important quantity related to (1.1) is the rescaled

free energy or Lyapunov functional equation.

E(ψ) =

∫
�2

[
|∇ψ|2 − (deg ψ)2

r2
χ(r) +

1

2ε2
(V0(x) − |ψ|2)2

]
dx, (1.5)

where χ(r) is a smooth positive function on [0,∞) vanishing at r= 0 and converging to

one as r → ∞. Thus, (1.1) can be written as

(α− iβ)∂tψ(x, t) = −δE(ψ)

δψ∗ , (1.6)

where f∗ denotes the conjugate of a function f. Thus, when α> 0, the GLSE (1.1) is a

dissipative system and the free energy decreases as time t increases, that is, dE(ψ)/dt� 0.

On the other hand, when α= 0, it is a dispersive system and thus it is time-reversible

and time-transverse invariant. Furthermore, the system admits at least two important

invariants, which are the rescaled free energy

E(ψ(·, t)) ≡ E(ψ(·, 0)) = E(ψ0), t � 0 (1.7)

and the rescaled density, respectively,

N(ψ(·, t)) =

∫
�2

[|ψ(x, t)|2 − |ψ0(x)|2] dx ≡ 0, t � 0. (1.8)
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There have been many analytical and numerical studies recently that deal with vortex

dynamics in the GLSE (1.1). For vortex dynamics in the GLE, that is, β= 0 in (1.1), Neu

[36, 37] found numerically that vortices with winding number m= ±1 are dynamically

stable and |m|> 1 dynamically unstable, respectively. Using asymptotic analysis, he showed

that a pair of vortices evolving under the GLE with like (opposite) winding numbers

undergoes a repulsive (attractive) interaction. Neu’s studies were later extended by others

[43, 44]. E [22] studied the dynamics of vortices in the GLE in the asymptotic limit

when the vortex core size is much smaller than the inter-vortex distance, and derived

reduced systems of ordinary differential equations (ODEs) governing the evolution of

these vortices. Similar studies have also been done by Chapman and Richardson [11]

and Weinstein and Xin [48] for the Ginzburg-Landau models of superconductivity. Lin

[32, 33] rigorously proved vortex dynamic laws and showed that the energies of solutions

in the GLE flow are concentrated at vortices in two-dimensions and filaments in three-

dimension. Similar studies were conducted by Jerrard and Soner [24]. Ovchinnikov and

Sigal [38, 40–42] studied the energy of Ginzburg-Landau vortices and their asymptotic

behaviour and examined the stability properties. The pinning effect of the vortices due to

impurities was also established [25–27, 34]. For numerical solutions of the GLE and the

related Ginzburg-Landau models of superconductivity, finite element methods (FEMs)

were studied [13, 17, 19, 28]. Numerical results of interaction between a few vortices [18,

31, 34] and vortex lattices [16] as well as the stochastic dynamics [15] have been reported.

For vortex dynamics in the NLSE, that is, α= 0 in (1.1), Neu [36] found that the

vortices behave like point vortices in ideal fluid and obtained the Hamiltonian equations

for governing dynamics of the vortex centres. Lin and Xin [35] derived a vortex motion

law in the incompressible fluid limit on a bounded domain with Dirichlet or Neumann

boundary condition. Colliander and Jerrard [14] investigated vortex structures in a torus.

Ovchinnikov and Sigal [39, 40] studied vortex structure of the corresponding solutions as

well as corrections due to radiation, and derived equations for the vortex dynamics and

radiation by using the methods of effective action and geometric solvability. Furthermore,

they analytically obtained the dynamical patterns of two vortices with like (opposite)

winding numbers in the NLSE when the initial distance between them is large enough

by solving the governing Hamiltonian equations [39]. Because of the dispersive nature of

the NLSE and highly oscillating nature in transverse direction of the nonzero far-field

boundary condition (1.3), it is extremely difficult to solve (1.1)–(1.3) numerically. To our

knowledge, there is no conclusive numerical result reported in the literature for vortex

stability and interaction in the NLSE. In fact, the dynamical stability of vortices as

solutions of the NLSE remains largely an open problem [36].

To study effectively the stability and dynamics of vortices as solutions of the GLSE

(1.1), especially for dynamics of vortex lattices, accurate and reliable numerical simulations

can be an important tool. Currently, the numerical methods proposed in the literature

for studying vortex dynamics in the GLSE remain limited [13, 17, 36], with most of

them being low-order methods. Thus, it is of much interest to develop an efficient,

accurate and unconditionally stable numerical method for the GLSE (1.1) with nonzero

far-field conditions (1.3). We propose such a numerical method here and apply it to study

vortex dynamics in the GLSE. The key features of our numerical method include (i) the

application of a time-splitting technique for decoupling the nonlinearity in the GLSE;
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(ii) the adoption of polar coordinates so as to effectively match and resolve the non-zero

far-field conditions (1.3) in phase space; and (iii) the utilization of Fourier pseudo-spectral

discretization in the transverse direction and a second- or fourth-order finite difference

or finite element discretization in the radial direction. The proposed numerical method is

similar to the one used to study the dynamics of rotating BEC [3, 4], where the angular

momentum rotation term becomes a constant with the adoption of polar coordinates.

The extensive numerical results presented in this article demonstrate that the method

is very efficient and accurate, and when applied to study interaction and dynamics of

vortex lattices in the GLSE (1.1), it is capable of producing conclusive simulation results

on the vortex stability and dynamic properties. These simulation results not only give

substantiation to some existing analytical studies while revealing their range of validity

but also provide new insight into the details of the stability and dynamic behaviour

beyond those currently known in the literature.

The article is organized as follows. In Section 2, we briefly review the vortex states

of the GLSE and their numerical computation. In Section 3, a new numerical method

is presented for the efficient and accurate simulation of the GLSE (1.1)–(1.3) in two-

dimensions. It is then applied to study dynamics of vortex states, the interaction of two

vortices with winding number m= ±1 and the dynamics of vortex lattices in the GLSE

in Section 4. Finally, some conclusions are drawn in Section 5.

2 Stationary vortex states

For the convenience of the reader, here we review the stationary vortex states of GLSE

(1.1) studied in [12, 36], that is, we consider the GLSE (1.1) in the time-independent case

with ε= 1 and V0(x) ≡ 1:

∆φ(x) + (1 − |φ(x)|2)φ(x) = 0, x ∈ �2, (2.1)

|φ(x)| → 1, when |x| → ∞, (2.2)

where φ(x) is a complex-valued function and can be viewed as the steady-state solution of

the GLSE (1.1). It is known that there are vortex solutions with a single winding number

or index m ∈ �, which take the form

φm(x) = fm(r) eimθ, x = (r cos(θ), r sin(θ)) ∈ �2. (2.3)

The modulus fm(r) satisfies the boundary value problem

1

r

d

dr

(
r
dfm(r)

dr

)
− m2

r2
fm(r) +

(
1 − f2

m(r)
)
fm(r) = 0, 0 < r < ∞, (2.4)

fm(0) = 0, fm(r) = 1, r → ∞. (2.5)

The asymptotic behaviour of fm(r) as r → 0 and r → ∞ can be respectively estimated as

follows [36]:

fm(r) ∼

⎧⎪⎨
⎪⎩
a r|m| + O(r|m|+2), as r → 0,

1 − m2

2r2
+ O

(
1

r4

)
, as r → ∞,

(2.6)

where a is a constant.
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Table 1. Core size of the vortex states for different winding number m

Winding number m= ±1 m= ±2 m= ±3 m= ±4

Core size r0m 1.75 3.3674 4.9128 6.4303
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Figure 1. Numerical solution of modulus fm(r) for different winding numbers m.

To find these vortex states numerically, we first truncate the problem (2.4)–(2.5) into

a bounded interval r∈ [0, R], with sufficiently large R and set an artificial boundary

condition fm(R) = 1 at r=R. Then we discretize the equation (2.4) by the second-order

finite difference method and solve the non-linear system by Newton iteration. We note

that a shooting method can also be employed to obtain such solutions [12, 29]. Figure 1

shows the numerical results of fm(r) for different winding numbers m. On the basics of

our numerical results in Section 4, we hereby define the core size r0m of a vortex state with

winding number m by the condition fm(r0m) = 0.755. Table 1 lists the core sizes of vortex

states with different winding number m, in particular, we have r01 ≈ 1.75.

For the equation (2.1)–(2.2) with a specified degree condition, solutions of the form

(2.3) are the only vortex solutions known in the literature, the question whether there are

other symmetry breaking solutions in the whole space remains open. A recent exploration

of this issue was done by Ovchinnikov and Sigal [42].

3 Numerical methods

In this section, we present an efficient, accurate and unconditionally stable numerical

method for solving the GLSE (1.1)–(1.3). In the practical implementation, we truncate

the problem (1.1)–(1.3) to one defined in a bounded computational domain with an

inhomogeneous Dirichlet boundary condition:

(α− iβ)∂tψ(x, t) = ∆ψ +
1

ε2

[
V (x, t) − |ψ|2

]
ψ, x ∈ ΩR, t > 0, (3.1)

ψ(x, t) = eimθ, x ∈ Γ = ∂ΩR, t � 0, (3.2)

ψ(x, 0) = ψ0(x), x ∈ Ω̄R; (3.3)
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where we choose ΩR = {(x, y), r=
√
x2 + y2<R} with sufficiently large R and V (x, t) =

V0(x)+W (x, t) withW (x, t) as an external driven potential. In our simulations, a sufficiently

large R is chosen to ensure that the effect of domain truncation remains insignificant.

The use of more sophisticated radiation boundary conditions is an interesting topic that

remains to be examined in the future.

3.1 Time splitting

Historically, time-splitting methods are among most popular methods for studying the

dynamics of GLSE, in particular, NLSE (see earlier studies [10, 46, 47] and the references

therein as well as recent developments and applications [5, 7–9]). For more general

discussions on splitting methods, we refer to references [23, 45]. Let ∆t> 0 be the step size

for time discretization. For n= 0, 1, 2, . . . , from time tn = n∆t to tn+1 = tn + ∆t, the GLSE

(3.1) is solved in two splitting steps. One first solves

(α− iβ)∂tψ(x, t) = ∆ψ, (3.4)

for the time step of length ∆t, followed by solving

(α− iβ)∂tψ(x, t) =
1

ε2
(V (x, t) − |ψ|2)ψ, (3.5)

for the same time step. Equation (3.4) is discretized in the next subsection. For t ∈ [tn, tn+1],

we easily obtain the following ODE for ρ(x, t) = |ψ(x, t)|2:

∂tρ(x, t) = η[V (x, t)ρ(x, t) − ρ2(x, t)], x ∈ ΩR, tn � t � tn+1, (3.6)

where η= 2α/ε2(α2 + β2). Denote Vn(x, t) =
∫ t
tn
V (x, τ) dτ, we can solve (3.6) to get

ρ(x, t) =
ρ(x, tn) exp[ηVn(x, t)]

1 + ηρ(x, tn)

∫ t

tn

exp[ηVn(x, τ)] dτ

. (3.7)

Consequently, in the special case V (x, t) =V0(x), i.e. W (x, t) ≡ 0, we have some exact

analytical solutions given by

ρ(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x, tn), α = 0,

ρ(x, tn)

1 + ηρ(x, tn)(t− tn)
, V0(x) = 0 & α� 0,

V0(x)ρ(x, tn)

ρ(x, tn) + (V0(x) − ρ(x, tn)) exp[−ηV0(x)(t− tn)]
, V0(x), α� 0.

(3.8)

For the phase angle S(x, t) (determined as ψ =
√
ρeiS ), we have the equation

∂tS(x, t) =
β

ε2(α2 + β2)
[V (x, t) − ρ] , x ∈ ΩR, tn � t � tn+1. (3.9)
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For α� 0, by (3.6), the above equation is equivalent to

∂tS =
β

2α
∂t ln ρ, x ∈ ΩR, tn � t � tn+1. (3.10)

Plugging (3.7) into (3.5), we get for t ∈ [tn, tn+1],

ψ(x, t) = ψn(x, tn)
√
Un(x, t) exp

[
iβ

ε2(α2 + β2)

(
Vn(x, t) −

∫ t

tn

ρ(x, τ) dτ

)]
, (3.11)

where

Un(x, t) =
exp [ηVn(x, t)]

1 + η|ψ(x, tn)|2
∫ t

tn

exp [ηVn(x, τ)] dτ

. (3.12)

Again, with V (x, t) = V0(x), we can integrate exactly to get

ψ(x, t) = ψ(x, tn)

⎧⎪⎨
⎪⎩

exp
[

i
ε2β

(
V0(x) − |ψ(x, tn)|2

)
(t− tn)

]
, α = 0,√

Û(x, t) exp
[
iβ
2α

ln Û(x, t)
]
, α� 0,

(3.13)

where

Û(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 + η|ψ(x, tn)|2(t− tn)
, V0(x) = 0,

V0(x)

|ψ(x, tn)|2 +
(
V0(x) − |ψ(x, tn)|2

)
exp(−ηV0(x)(t− tn))

, V0(x)� 0.

Remark 3.1. If the function Vn(x, t) as well as other integrals in (3.11) cannot be evaluated

analytically, numerical quadrature can be used, for example,

Vn(x, tn+1) =

∫ tn+1

tn

V (x, τ) dτ ≈ ∆t

6
[V (x, tn) + 4V (x, tn + ∆t/2) + V (x, tn+1)].

Remark 3.2. In practice, we always use the second-order Strang splitting [45], that is,

from time t = tn to t = tn+1: (i) evolve (3.5) for half-time step ∆t/2 with initial data given

at t= tn; (ii) evolve (3.4) for one time step ∆t starting with the new data; and (iii), evolve

(3.5) for half-time step ∆t/2 with the newer data.

3.2 Discretization in space

To solve (3.4), we adopt the polar coordinate (r, θ) so as to match the highly oscillatory

boundary condition (3.2) in the transverse direction, and try to formulate the equation

in a variable-separable form. We discretize in θ-direction by the Fourier pseudo-spectral

method, in r-direction by FEM and in time by Crank-Nicolson scheme. With the following
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expansion

ψ(r, θ, t) =

l=L/2−1∑
l=−L/2

ψ̂l(r, t) e
ilθ, (3.14)

where L is an even positive integer and ψ̂l(r, t) is the Fourier coefficient for the l-th mode,

we can take (3.14) into (3.4) and get for −L
2

� l � L
2

− 1 and 0<r<R:

(α− iβ) ∂tψ̂l(r, t) =
1

r

∂

∂r

(
r

∂ψ̂l(r, t)

∂r

)
− l2

r2
ψ̂l(r, t), (3.15)

ψ̂l(R, t) = δlm (for all l), ψ̂l(0, t) = 0 (for l� 0); (3.16)

where δlm is the Kronecker delta satisfying

δlm =

{
1 l = m,

0 l�m.

Let Pk denote all polynomials with degree at most k, J > 0 be a chosen integer,

0= r0<r1<r2< . . . < rJ =R be a partition for the interval [0, R] with a mesh size

h = max0 � j < J {rj+1 − rj}. Define a finite element space by

Uh =
{
uh ∈ C[0, R] | uh|[rj ,rj+1] ∈ Pk, 0 � j < J, uh(R) = δlm

}
,

for l= 0, and for l� 0,

Uh =
{
uh ∈ C[0, R] | uh|[rj ,rj+1] ∈ Pk, 0 � j < J, uh(0) = 0, uh(R) = δlm

}
,

then we obtain the FEM approximation for (3.15)–(3.16): Find ψ̂hl (·, t) ∈ Uh such that for

all ϕh ∈ Uh and tn � t� tn+1,

(α− iβ)
d

dt
A

(
ψ̂hl (·, t), ϕh

)
= B

(
ψ̂hl (·, t), ϕh

)
+ l2C

(
ψ̂hl (·, t), ϕh

)
, (3.17)

where for uh, vh ∈ Uh,

A(uh, vh) =

∫ R

0

ruh(r)vh(r) dr, B(uh, vh) = −
∫ R

0

r
duh(r)

dr

dvh(r)

dr
dr,

C(uh, vh) = −
∫ R

0

1

r
uh(r) vh(r) dr.

The ODE system (3.17) is then discretized by the standard Crank-Nicolson scheme in

time. Although an implicit time discretization is applied for (3.17), the one-dimensional

nature of the problem makes the coefficient matrix for the linear system band limited.

For example, if the piecewise linear polynomial is used, that is, k= 1 in Uh, the matrix is

tridiagonal. Fast algorithms can be applied to solve the resulting linear systems.

For the discretization considered here, the total memory requirement is O(JL) and the

total computational cost per time step is O(JL lnL).
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Remark 3.3. As noticed in [4, 30], (3.15)–(3.16) may also be discretized using the finite

difference in space on a mesh with a shifted grid and the Crank-Nicolson scheme in

time. When the standard second-/fourth-order finite difference is applied in space, only a

tridiagonal/pentadiagonal linear system needs to be solved, which can be done via O(J)

arithmetic operations, see Bao et al. [4] for details.

4 Simulations of quantized vortices

In this section, we apply the numerical method described in the previous section to study,

in the context of GLSE (1.1)–(1.3), the stability of central vortex states with different

winding numbers, the interaction of two vortices with winding number m = ±1, the

dynamics of vortex lattices and the vortex motion with inhomogeneous external potential.

These are documented in different subsections. Wherever simulation results are given,

some discussions are made on the basis of the numerical findings. All simulation results

are justified and confirmed numerically by using a finer mesh and a smaller time step.

For all the simulations, we in general report results for three separate cases:

Case I. Ginzburg-Landau equation (GLE): α = 1, β = 0 in (1.1);

Case II. Nonlinear Schrödinger equation (NLSE): α= 0, β= 1 in (1.1);

Case III. Complex Ginzburg-Landau equation (CGLE): α= 1, β= 1 in (1.1).

Notice that the computation in Case II is often the most difficult one due to the

dispersive nature of the NLSE and there are very few conclusive simulation results in

such a case.

In our computation, we take R= 7, 400 for ΩR and time step ∆t= 0.0001. In θ-direction,

a uniform mesh with mesh size ∆θ= π/128, that is, L= 256 in (3.14), is used. In r-direction,

a graded piecewise uniform mesh with 6, 001 grid points from the smallest mesh size

∆r= 1/60 for the subinterval [0, 10] to the largest mesh size ∆r= 11/3 for the subinterval

[6, 300, 7, 400] is applied. These parameter values have been tested to ensure the accuracy

of the simulation results.

4.1 Stability of vortex states

To study the stability of vortex states of the GLSE numerically, we take ε= 1 and

V0(x) ≡ 1 in (1.1) and choose the initial data (3.3) as

ψ0(x) = φm(x) = fm(r)eimθ, x ∈ ΩR,

where fm(r) is the numerical solution of (2.4)–(2.5), as depicted in Figure 1.

As it is commonly accepted that the stability of vortices is dependent on the type of

perturbations, we thus consider two types of perturbations in the following:

Type 1. Small perturbation on the initial data; an example is given by artificially setting

ψ0(±0.2, 0) = 0 and choosing W (x, t) ≡ 0 in (3.1).

Type 2. Perturbation on the external potential; an example is given by introducing

a far-blue detuned Gaussian laser beam stirrer with height Ws(t), width ws and at
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Figure 2. Surface plots of −|ψ(x, t)| at different times for the stability study of the vortex state

(m= 1) in GLE under Type 1 perturbation.

Figure 3. Surface plots of −|ψ(x, t)| at different times for the stability study of the vortex state

(m= 3) in GLE under Type 1 perturbation.

position xs(t):

W (x, t) = Ws(t) exp

[
−

(
|x − xs(t)|2
ws/2

)]
. (4.1)

The numerical results corresponding to the GLE under a perturbation on the initial

data, that is, type 1, are illustrated in Figures 2 and 3.

For vortex states with different winding numbers (m= 1 and m= 3 separately), the

figures illustrate their stability under this type of perturbations. Note that, for more clear

illustration of the vortices, the displays given in the figures often only portray the solutions

on a small portion of the much bigger spatial computational domain. Such a practice is

also applied to figures given in this article, though the portions where the solutions are

shown often vary in order to most effectively capture the interesting properties of the

solutions.

In comparison, Figures 4 and 5 show similar results for the NLSE under a perturbation

on the external potential, that is, Type 2. In addition, Figures 6 and 7 present the

trajectories of vortex centres and the radiation for the same stability study of a vortex

state (m= 2) in the NLSE. In our implementation, the parameters in (4.1) are chosen as

ws = 1, and

(xs(t), ys(t)) ≡ (3, 0), Ws(t) =

{
−5 sin2(2t), t ∈ [0, π/2],

0, t � π/2.

Thus, the perturber is only introduced when t ∈ [0, π/2], and when t � π/2, it is removed.
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(m= 1) in NLSE under Type 2 perturbation.
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(m= 3) in the NLSE under Type 2 perturbation.
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From Figures 2–7 and similar numerical experiments for other index m (omitted here

for brevity), we may draw the following conclusions for the stability of vortex states in

the GLSE, depending on the winding numbers.

Firstly, the vortex states with winding number m= ±1 are dynamically stable in all

three cases, that is, in the GLE, NLSE and CGLE (cf. Figures 2 and 4). This substantiates
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Figure 7. Plots of |ψ(x, 0, t)| at different times for the stability study of the vortex state with m= 2

in the NLSE under a Type 2 perturbation.

the stability assumption used in the studies of such vortex dynamics in the literature for

the GLE and NLSE [35].

Secondly, for the vortex states with winding number |m|> 1, there are two different

scenarios. On one hand, for the GLE and CGLE, they are dynamically unstable under

perturbations that are either in the initial data or in the external potential (cf. Figure 3).

When t is large, a vortex state initially with winding number m splits into |m| well-

separated vortices with winding number +1 when m> 0 and −1 when m< 0, respectively.

The details of the splitting and the motion of the |m| separated vortex centres depend on

the perturbation. These results very well agree with those for the GLE in the literature

[22, 36]. On the other hand, for the NLSE, these vortex states with winding number |m|> 1

are dynamically stable under a small perturbation in the initial data, but unstable under a

perturbation in the external potential (cf. Figure 5). In the latter case, a vortex state with

a winding number m will split into |m| vortices, though the core of |m| vortices are well

overlapped (cf. Figure 5). We also conducted some studies on the effect of radiation for

this set of experiments. It was predicted that, for example, in Lange and Schroers [31], a

perturbed vortex configuration for the NLSE with m= 2 would rotate (cf. Figure 6) and

would also emit radiation (cf. Figure 7), which carries away energy. The small oscillations

observed in Figure 7 correspond to sound waves generated in the dynamics, which is

justified numerically by using different finer meshes and smaller time steps. The vortex

configuration would then make adjustment by finding a configuration of lower energy,

that is to say, by splitting up into two m= 1 vortices (cf. Figure 6). It is unclear which

type of perturbation is implied in Lange and Schroers [31], but the above prediction is

nevertheless consistent with our simulation using a perturbation in the external potential

(cf. Figures 6 and 7).

4.2 Interaction of two vortices with winding number m= ±1

Since a vortex state with winding number m= ±1 is dynamically stable in the GLSE

(1.1), it is thus of interest to study their dynamic interactions. To do so, we take ε= 1 and
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V0(x) ≡ 1 in (1.1) and choose the initial data (3.3) as

ψ0(x) = φm1

(
x − x0

1

)
φm2

(
x − x0

2

)
= φm1

(
x− x0

1, y − y0
1

)
φm2

(
x− x0

2, y − y0
2

)
, (4.2)

where φmj is the vortex state given by (2.3) with winding number mj (mj = 1 or −1). That

is, we want to study the interaction of two vortices with initial centres at x0
j = (x0

j , y
0
j )

(j= 1, 2). We take m=m1 + m2 in (3.2) and refer to the vortex with mj = 1 as having a

positive charge, while mj = −1 as a negative charge.

Here, we study numerically two cases of interaction by solving the GLSE (3.1) with

initial data (4.2) involving two vortices, using the method discussed in the previous section:

Case I. Two vortices with like winding numbers, that is, m1 =m2 = 1, x0
1 = (a, 0) and

x0
2 = (−a, 0) with a constant;

Case II. Two vortices with opposite winding numbers, that is, m1 = −m2 = 1, x0
1 = (a, 0)

and x0
2 = (−a, 0) with a constant.

Figure 8 gives the time evolution of vortex centres for Case I, and Figure 9 presents

similar results for Case II. Furthermore, Figure 10 shows the time evolution of the rescaled

free energy E(ψ).

From Figures 8–10, we can draw the following conclusions for the interaction of two

vortices described by the GLSE (1.1):

First of all, for the GLE, two vortices with like (opposite) winding numbers undergo

a repulsive (attractive) interaction, and the centres of the two vortices move along a

straight line passing through their locations at t = 0 (cf. Figures 8(a) and 9(a)) with

their speeds depending on their distance. The larger is the distance, the slower is the

motion. One can compare this with the reduced dynamics of vortex centres [36, 39] in the

GLE. One can easily deduce that if we start with two like vortices in symmetric locations

±(a, 0), then the solution of the reduced dynamics [36, 39] is given by ±(
√
a2 + κlt, 0),

with κl as a constant. On the other hand, with two opposite vortices, the solution of

the reduced dynamics [36] is given by ±(
√
a2 − κot, 0) before the annihilation, with κo

as a constant, which implies the collision time Tc = a2/κo = O(a2). Their conclusions

are consistent with our numerical simulations. In addition, as expected, the rescaled

free energy decreases in the GLE (cf. Figure 10(a)). Furthermore, for two vortices with

opposite winding numbers, the energy almost decreases to zero during the collision

(cf. Figure 10(b)).

Secondly, for NLSE, vortices behave like point vortices in an ideal fluid. If the two

vortices have the same winding number (charge) with initial distance d0 = |x0
1 − x0

2| = 2a,

there exists a critical time t0> 0, depending on d0, such that before time t0, that is,

0 � t� t0, the two vortices move from their initial locations to a circle with diameter

d1 = |x1(t0) − x2(t0)| and the change of the distance between the two vortex centres is

rapid (cf. Figure 8(c)); after time t0, that is, for t� t0, the two vortices rotate along a

circle (counterclockwise when winding number mj = +1 and clockwise when mj = −1

respectively,) like a spin with an angular frequency ω(d0), and the diameter of the circle

increases very slowly. Our numerical results here suggest that the reduced dynamics [36,

38] of vortex centres in the NLSE in this case is qualitatively correct (cf. Figure 8(c))

when d0 = 2a is large, and corrections must be added when d0 is small.
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Figure 8. Time evolution of vortex centres for Case I with a = 2. (a) GLE; (b) CGLE; (c) NLSE.

On the other hand, for the case of two vortices having opposite charge, there is a critical

distance dcr satisfying that, for d0 = |x0
1 − x0

2|<dcr, the two vortices approach each other

while drifting sideways and then collapse to annihilate each other (cf. Figure 9(c)); and for

d0 = |x0
1 − x0

2|>dcr, they move almost in parallel (cf. Figure 9(e)). Our simulations suggest

that dcr ≈ 2r01 = 2 × 1.75 = 3.5, that is, two times of the core size r01, which is almost three

times the theoretical prediction dcr ≈
√

2 [40]. Thus, our numerical experiments provide

very precise characterisation on the range of validity of the reduced dynamics [36, 39] in

terms of the separation length between the opposite vortices. Also, we note for the NLSE

dynamics, the rescaled free energy is conserved during time evolution in the two cases (cf.

Figure 10).

Next, for the case of CGLE, two vortices with the same charge move away from each

other and the trajectory is a combination of a straight line and a circle (cf. Figure 8(b)). On

the contrary, two vortices with opposite charges collide after some time (cf. Figure 9(b)).



Vortex dynamics in Ginzburg-Landau-Schrödinger equation 621

(a)
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5 −1 −0.5 0

0

0.5 1 1.5

−0.1

0

0.1

x

x

x

x

x

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

t

0 0.2 0.4 0.6 0.8
0

1

2

3

t

(b)

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

−1.5 −1 −0.5 0.5 1 1.5

0 0.5 1 1.5
−0.5

0
0.5

1

1.5

t

0 0.5 1 1.5
0

1

2

3

t

(c)

−2.5

−2

−1.5

−1

−0.5

0

0 1 2 3

−2

0

2

t

0 1 2 3
0

1

2

3

t

(d)
−2 −1 0 1 2

−100

−80

−60

−40

−20

0

20

0 50 100 150
−80

−60

−40

−20

0

t

0 50 100 150
2.5

3

3.5

4

t

(e)
–6 –4 –2 0 2 4 6

–10

–5

0

5

10

y
y

y
y

y

0 20 40 60 80
−10

0

10

t

0 20 40 60 80
9.7

9.8

9.9

10

t

D
is

ta
nc

e
x 1

(t
) 

or
 y

1(
t)

D
is

ta
nc

e
x 1

(t
) 

or
 y

1(
t)

D
is

ta
nc

e
x 1

(t
) 

or
 y

1(
t)

D
is

ta
nc

e
x 1

(t
) 

or
 y

1(
t)

D
is

ta
nc

e
x 1

(t
) 

or
 y

1(
t)

Figure 9. Time evolution of vortex centres for Case II. (a) GLE with a = 1.5; (b) CGLE with

a = 1.5; (c) NLSE with a = 1.5<r01 ≈ 1.75; (d) NLSE with a = 2>r01; and (e) NLSE with

a = 5 � r01 .
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4.3 Dynamics of vortex lattices

In this subsection, we present numerical studies on the dynamics of vortex lattices in the

GLSE (1.1). We take ε = 1 and V0(x) ≡ 1 in (1.1) and choose the initial data (3.3) as

ψ0(x) =

N∏
j=1

φ1

(
x − x0

j

)
=

N∏
j=1

φ1

(
x− x0

j , y − y0
j

)
, (4.3)

where N is the total number of vortices in the lattice and φ1 is the vortex state given by

(2.3) with winding number mj = 1. We take m = N in (3.2) and study two cases:

Case I. N = 9 and the initial vortex centres are located on a uniform 3 × 3 mesh points

for the rectangle [−4, 4] × [−4, 4];

Case II. N = 25 and the initial vortex centres are located on a uniform 5 × 5 mesh points

for the rectangle [−4, 4] × [−4, 4];

Figures 11 and 12 show the surface plots of −|ψ| and the time evolution of vortex

centres for Case I in the GLE and the NLSE, respectively. Figure 13 shows |ψ(x, 0, t)|
(x� 0) at different times for the NLSE in Case I, while Figure 14 shows the contour plots

of |ψ| for the NLSE in Case II.

On the basis of Figures 11 to 14, we can draw the following conclusions. Firstly, for the

GLE and NLSE, the vortex initially at the origin does not move because of the symmetry

(cf. Figures 11(a)–(b), 12(a)–(b) and 14). Secondly, for the GLE in Case I, each vortex

centre moves outward along the line passing through its location at t = 0 and the origin

(cf. Figure 11(b)). After some time, the lattice splits into nine well-separate vortex states

with winding number mj = 1 (cf. Figure 11(a)). At any time t, the four vortices initially

located at the four corners of the lattice are always on a circle with radius r1(t); and the

other four vortices initially located at the axes of the lattice are always on another circle

with radius r2(t). The radii of the two circles, that is, r1(t) and r2(t), increase when the

time t increases, but their distance, that is, |r1(t) − r2(t)|, decreases when t increases (cf.

Figure 11(c)). Thirdly, for the NLSE, the vortices rotate counterclockwise and move along

two circles. The distance between the two circles changes periodically (cf. Figure 12(c)).

The vortex cores are well overlapped for a very long time. During the time evolution,

sound waves are generated and they radiate outward in the NLSE (cf. Figure 13).



Vortex dynamics in Ginzburg-Landau-Schrödinger equation 623

Figure 11. (a) Surface plots of −|ψ| at different times; (b) trajectory of the vortex centres (‘+’:

t = 0 and ‘o’: t = 15); and (c) time evolution of vortex centres, for dynamics of a vortex lattice with

nine vortices (Case I) for the GLE.

4.4 Dynamics of vortex under inhomogeneous external potential

In this subsection, we numerically study the dynamics of vortices under an inhomogeneous

external potential. We take V0(x) in (1.1) as

V0(x) =
1

1 + e−(γxx2+γyy2)
=

1

1 + e−r2(γx cos2 θ+γy sin2 θ)
, x ∈ �2, (4.4)
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Figure 12. (a) Surface plots of −|ψ| at different times; (b) trajectory of the vortex centres (‘+’:

t = 0 and ‘o’: t = 15); and (c) time evolution of vortex centres, for dynamics of a vortex lattice with

nine vortices (Case I) for the NLSE.

where γx and γy are two positive constants. It is easy to see that V0(x) attains its minimum

value 1/2 at the origin. The initial data are chosen as

ψ(x, 0) = ψ0(x) = φ1(x − x0), x ∈ �2, (4.5)

where φ1(x) is the vortex state of (2.1)–(2.2) with winding number m = 1.
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Figure 13. Plots of |ψ(x, 0, t)| (x� 0) at different times for the NLSE in Case I for showing sound

wave propagation.
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Figure 14. Contour plots of |ψ| at different times for dynamics of the NLSE with 25 vortices

(Case II).

We now study the dynamics of vortex under two types of inhomogeneous external

potential:

Case I. Symmetric external potential, that is, γx = γy = 1 in (4.4);

Case II. Anisotropic external potential, that is, γx = 1 and γy = 20 in (4.4).
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Figure 15. Vortex centre trajectory (left) and its distance to the origin (right) under an

inhomogeneous external potential for the GLE: (a) Case I; (b) Case II.

Dynamically, for the GLE, that is, β = 0 in (1.1), one can compute analytically the

velocity of the induced motion due to the inhomogeneous impurities as follows [26]:

v(t) :=
dx(t)

dt
= −∇ lnV0(x(t)) = 2 [V0(x(t)) − 1]Gx(t), where G =

(
γx 0

0 γy

)
,

with x(0) = x0. In this approximate vortex dynamic law of the GLE with impurity, the

vortex will move to the minimizer of the external potential V0(x). Furthermore, in Case

I, the trajectory is a segment connected to x0 and the minimizer of V0(x). For the NLSE

and CGLE, the dynamic laws with impurities remain to be established.

Figures 15–16 show the trajectory of the vortex centre with x0 = (1, 3) in (4.5) for the

GLE and CGLE with different values of ε. Figure 17 shows similar results for the NLSE

with x0 = (1, 2).

From Figures 15 and 17, we can draw the following conclusions. Firstly, for the GLE

and CGLE, the vortex centre moves monotonically to the position where the external

potential V0(x) attains its minimum value (cf. Figures 15 and 16), illustrating the pinning

effect. The speed of the motion depends on the values of the parameter ε. The trajectory

of the vortex centre depends on the external potential V0(x), which agrees with the

reported analytical results for the GLE [25, 26, 34]. Secondly, for the NLSE, the vortex

centre moves rotationally clockwise to the minimum position of the external potential
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Figure 16. Vortex centre trajectory (left) and its distance to the origin (right) under an

inhomogeneous external potential for the CGLE: (a) Case I; (b) Case II.
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inhomogeneous external potential for the NLSE: Case I.
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(cf. Figure 17). When ε is small, the smaller the ε is, the longer time the vortex centre stays

on a circle. Additional experiments were carried out for Case II. Similar motion patterns

are observed so the pictures are omitted here. Rigorous justification of this observation is

still not available.

5 Conclusion

There have been extensive studies in recent years concerning the quantized vortex dynamics

governed by the GLSE, yet many interesting questions remain open. By proposing an

efficient, accurate and unconditionally stable numerical method for the GLSE with non-

zero far-field conditions in two dimensions, and applying this new numerical method

to the GLSE, we numerically examined issues such as the stability of quantized vortex,

interaction of two vortices, dynamics of the quantized vortex lattice and motion of vortex

under inhomogeneous external potential in the GLSE. We provided convincing numerical

results to show that, for the real-time dynamics, the central vortex state are dynamically

stable only for the one with index (or winding number) m = ±1 in the GLSE. We

numerically verified that (i) in the case of the GLE, two vortices with like (opposite)

winding numbers undergo a repulsive (attractive) interaction; (ii) in the case of NLSE,

vortices behave like point vortices in ideal fluid; if two vortices have the same winding

numbers, they move along a circle; and if they have the opposite winding numbers, they

collide when their initial distance is small and move in parallel when their initial distance

is large enough; (iii) in the presence of an inhomogeneous external potential, the vortex

centre will move to the point where the external potential attains its minimum when

time t is large enough; and (iv) sound wave is observed in the vortex dynamics of the

NLSE. Furthermore, we also carried out a detailed simulation of the NLSE dynamics

of vortex lattice with 25 vortices, which is extremely challenging computationally and is

the first one available in the literature. Finally, the efficient, unconditionally stable and

accurate numerical method can be applied to study quantized vortex interactions in the

GLSE with different initial set-ups, and comparisons to the solutions of the reduced

dynamics [26, 35, 36, 39] of the GLSE are reported [49]. In addition, we point out that

the numerical method discussed here can be extended to study the dynamics and the

interaction of vortex line states in three dimensions as well as in bounded domains for

the GLSE.
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