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1. Introduction

We begin by stating the molecular statics problem we wish to
solve. Consider a crystal with N particles and let1 N ¼ f1; . . . ;Ng
denote the index set of all particles. Denote by Xa;xa 2 Rd the posi-
tions of particle a 2N in the reference and deformed configurations,
respectively, where d = 1, 2, or 3 denotes the spatial dimension. In
practice, the position of some particles, e.g., the particles located
near or on parts of the boundary, may be specified. Thus we denote
by Nf �N the index set of the particles whose positions are spec-
ified through

xa ¼ x0
a for a 2Nf ; ð1:1Þ

where x0
a is a given position vector. Let Na ¼N nNf so that Na is

the index set of the remaining particles, i.e., the particles whose
positions are not specified.

The total potential energy is defined by

Uðfxaga2NÞ ¼ Uaðfxaga2NÞ þUeðfxaga2NÞ; ð1:2Þ
ll rights reserved.

Energy under Grant Number
’s ‘‘Multiscale Mathematics”

zburg@fsu.edu (M. Gunzbur-

ex sets and the corresponding

Gunzburger, Quadrature-rule t
ch. Engrg. (2009), doi:10.1016
where Ua denotes the potential energy due to the interaction be-
tween particles and Ue is a conservative external potential. We as-
sume that the potential energy Ua can be given as a sum of pairwise
interaction potentials each of which depends only on the position of
the corresponding pair of particles, i.e.,

Uaðfxaga2NÞ ¼
1
2

X
a2N

X
b2N;b–a

Ua
a;bðxa;xbÞ; ð1:3Þ

where Ua
a;b ¼ Ua

b;a denotes the interaction energy between the par-
ticles a and b. In addition, we assume that the external potential
Ue can be expressed as a sum of the potential energies of the exter-
nal force acting on each particle and that the latter depends only on
the position of the corresponding particle, i.e.,

Ueðfxaga2NÞ ¼
X
a2N

Ue
aðxaÞ: ð1:4Þ

Thus the total potential energy in (1.2) can be expressed as

Uðfxaga2NÞ ¼
1
2

X
a2N

X
b2N;b–a

Ua
a;bðxa; xbÞ þ

X
a2N

Ue
aðxaÞ: ð1:5Þ

To determine stable equilibrium configurations, we minimize the
total energy Uðfxaga2NÞ in (1.5) subject to (1.1), i.e., we solve the
problem

min
xa ;a2Na

Uðfxbgb2NÞ subject to ð1:1Þ ð1:6Þ
ype approximations to the quasicontinuum method for long-range inter-
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or, equivalently,2

@U
@xa
ðfxbgb2NÞ ¼ 0 for a 2Na and xa ¼ x0

a for a 2Nf :

ð1:7Þ

We see that, after substituting (1.1), (1.7) becomes a system of dNa

equations in dNa unknowns xa, a 2Na. Usually, the number Na is of
the order of N, which is a huge number so that solving the whole
system (1.7) (the full atomistic model) is impractical.

On the other hand, many practical problems require full atom-
istic resolution only in small regions where defects occur. To sim-
plify the large atomistic model, the quasicontinuum (QC) method
was proposed in [1,2]. Instead of treating all particles, the QC
method considers only a small set of representative particles and
approximates the energy of the whole system in term of the repre-
sentative particles. As a result, it involves significantly fewer de-
grees of freedom compared to the full atomistic system (1.7).
Recently, the QC method has become a popular multiscale method
for material modeling and simulation; many implementations,
enhancements, extensions, and applications of the QC method
are addressed in, e.g., [3–18]. Analysis of the QC method and its
variants can be found in, e.g., [4,6,8,10–12,14].

Although it has fewer degrees of freedom than the full atomistic
model, the original QC method, in its raw form, still involves calcu-
lations over the full atomistic lattices so that the work needed to
obtain a solution is still dependent on the total number of particles
N [12,1,2]. To avoid this, many methods have been proposed to
approximate the QC method, e.g., node-based summation rules
[12], cluster summation rules [12], and quadrature-rule type meth-
ods [19]. Provided that the interatomic interactions are short-ran-
ged, the computational complexities of all these methods are
independent of N, the total number of particles. However, many
materials exhibit long-range interactions [20]. Although numerical
experiments show that both the cluster summation rule and the
quadrature-rule type methods are quite stable and accurate for
the case of short-range interactions [12,19], they are not effective
for the long-range case. This is because, in the long-range interac-
tion case, these methods still have computational complexities
that depend on the total number of particles.

Coulomb forces are the prime example of a long-range interac-
tion; such forces are present in many materials including bio-mol-
ecules. Due to the very large set of applications in which Coulombic
interactions play a central role, it is not surprising that many meth-
ods have been developed with the aim of reducing the complexity
of molecular dynamic calculations for this case; see, e.g., [21–24]
for methods that are not connected to the QC method. However,
as is the case for cluster summation approximations to the QC
method [12], none of these has complexity that is independent of
the total number of particles. For example, the method of [21]
has complexity of OðN3=2Þ, that used in [22,23] is at best of OðNÞ,
and that of [24] reduces the complexity only by a factor of 3–5,
i.e., the dependence on N remains unchanged. The QC–QR method
developed in this paper has complexity for the Coulombic interac-
tion case, indeed for any long-range as well as short-range
interaction problem, that is independent of the total number of
particles.

In [19], quadrature-rule (QC–QR) type approximations to the
quasicontinuum (QC) method were presented and tested for the
case of short-range interactions. The development of the method
for the case of long-range interactions requires several algorithmic
innovations. The aim of this paper is to present, discuss, analyze,
and illustrate these innovations. However, in several places, some
2 The notation @U=@y denotes the d-vector ryU having components
@U=@yk; k ¼ 1; . . . ; d.
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aspects of the method in this paper are shared with those in [19]
so that we rely on that paper for some algorithmic details.3

The paper is organized as follows: in Section 2, we review the
QC method for molecular statics and introduce the notations used
in subsequent sections. In Section 3, we provide a detailed descrip-
tion of the QC–QR method and, in Section 4, an analysis of its accu-
racy and complexity is presented. Numerical examples are
presented in Section 5 to illustrate the performance characteristics
of the QC–QR method; in particular, we illustrate that indeed the
complexity of the QC–QR method is independent of the total num-
ber of particles, even for the long-range interaction case. In Sec-
tion 6, we give a brief summary and discussion of follow-up work.

2. The quasicontinuum (QC) method

Let fNr �N denote the index set of the representative particles.
The selection of the representative particles is based on the local
variation of the fields; see [12] for the details. Typically, since the
particles having specified positions may provide important infor-
mation of the system, e.g., the ‘‘boundary” condition, one should
choose all of them to be among the representative particles so that
Nf � fNr . Then denote Nr ¼ fNr nNf as the index set of the
remaining representative particles whose positions are not speci-
fied through (1.1).

In the reference configuration, construct a triangulation
Th ¼ fDtgT

t¼1 which consists of simplices having the representative
particles as vertices. Let fwh

j ðXÞgj2eNr
denote a collection of basis

functions corresponding to the triangulation Th. In particular, we
choose wh

j ð�Þ to be a continuous, piecewise linear polynomial with
support restricted to the simplices having Xj as a vertex [25]. Thus
if Tj ¼ ft 2 f1; . . . ; TgjXj 2 Dtg, i.e., Tj is the index set of simplices
which have the particle Xj serving as a vertex, we have

wh
j ðXÞ ¼ 0 for X 2 Dt but t R Tj:

Based on the Cauchy–Born hypothesis, we assume that the position
of particle a 2Na can be approximated through interpolation of the
(approximate) positions of the representative particles, i.e.,

xh
a ¼

X
j2eNr

xh
j wh

j ðXaÞ � xa for a 2Na; ð2:1Þ

where xh
j is the (approximate) position of the representative particle

j 2 fNr . In fact, (2.1) holds for any particle a 2N, including the rep-
resentative particles. Substituting (2.1) into the total potential en-
ergy in (1.5), we have

Uhðfxh
j gj2eNr

Þ ¼ Uðfxh
aga2NÞ

¼ 1
2

X
a2N

X
b2N;b–a

Ua
a;bðxh

a;x
h
bÞ

þ
X
a2N

Ue
aðxh

aÞ � Uðfxaga2NÞ: ð2:2Þ

Due to (2.1), Uh is indeed a function of the (approximate) positions
of the representative particles. Thus, the only degrees of freedom
appearing in Uh are the positions of the representative particles
whose positions are not specified through (1.1). To determine these
degrees of freedom, we solve the minimization problem

min
xh

j
;j2Nr

Uhðfxh
kgk2eNr

Þ subject to ð1:1Þ:

Equivalently, we solve the system
3 We note that extensive comparisons of the QC–QR method and the cluster
summation method [12] are given in [19] for the case of short-range interactions.
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@Uh

@xh
j
fxh

i gi2eNr

� �
¼
P

a2Na

@U
@xh

a
fxh

bgb2N
� �

wh
j ðXaÞ ¼ 0 for j 2Nr

where xh
a ¼ x0

a if a 2Nf ; xh
a ¼

P
k2eNr

xh
kw

h
kðXaÞ if a 2Na:

8>><>>:
ð2:3Þ

Denote by

Nj ¼ a 2NajXa 2 supp wh
j ðXÞ

� �n o
the index set of the particles that are located (in the reference con-
figuration) within the support of the basis function wh

j ð�Þ, but whose
positions are not specified by (1.1). Thus for any particle
a 2Na nNj, we have that wh

j ðXaÞ ¼ 0. Then the system (2.3) re-
duces to [19]

P
a2Nj

wh
j ðXaÞ

P
b2N;b–a

fa
a;bðxh

a; x
h
bÞ

 !
þ
P

a2Nj

wh
j ðXaÞfe

aðxh
aÞ ¼ 0 j 2Nr

where xh
a ¼ x0

a if a 2Nf ; xh
a ¼

P
k2eNr

xh
kw

h
kðXaÞ if a 2Na;

8>>>><>>>>:
ð2:4Þ

where the function

fa
a;bðxa; xbÞ ¼ �

@Ua
a;bðxa;xbÞ
@xa

for a;b 2N ð2:5Þ

defines the force acting on particle a due to its interaction with par-
ticle b and the external force on particle a is defined by

fe
aðxaÞ ¼ �

@Ue
aðxaÞ
@xa

for a 2N: ð2:6Þ

In the system (2.4), there are dNr equations in the same number of
unknowns xh

j ; j 2Nr . In practice, we want to have that Nr � Na so
that the QC system (2.4) is much smaller than the molecular statics
system (1.7). However, even though the system (2.4) has fewer de-
grees of freedom, the work involved in determining its solution still
depends on N, the total number of particles. This is because in the
assembly of the jth equation, the outer sum is over the particles lo-
cated in the support of the basis function wh

j ð�Þ, so that collectively
the number of summands that have to be evaluated in the system
(2.4) is of the order of N. In addition, each summand itself is a func-
tion of N variables so that the work in evaluating each summand
also depends on N.

On the other hand, even if the approximate positions fxh
j gj2Nr

of
the representative particles are known, the evaluation of the
approximate energy in (2.2) still requires work of complexity
OðN2Þ because Uðfxh

aga2NÞ is a function of the positions of all
particles.

3. Quadrature-rule (QC–QR) type approximation

Provided Nr � Na, the application of the quasicontinuum (QC)
method effectively reduces the degrees of freedom from Na to Nr .
However, it still involves the positions of all particles so that the
complexity of the QC method depends on the total number of par-
ticles N. In this section, we introduce a quadrature-rule (QC–QR)
type method to reduce the complexity of the QC method.

3.1. Quadrature rules

In the QC method, the dependence of the total number of parti-
cles is caused by both the outer and inner sums in (2.2) and (2.4)
that directly or collectively involve the calculation of the positions
of all particles. Thus to reduce the cost of the QC method, we start
by considering these summations. In particular, there are three
Please cite this article in press as: Y. Zhang, M. Gunzburger, Quadrature-rule t
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types of sums in the QC formulations (2.2) and (2.4), i.e., outer
sums of the form

G ¼
X
a2N

gðXaÞ and Gj ¼
X

a2Nj
gðXaÞ for j 2Nr ð3:1Þ

and inner sums

Sa ¼
X

b2N;b–a

sðXa;XbÞ for a 2N; ð3:2Þ

where gð�Þ and sð�; �Þ are appropriate functions. The basic idea of the
QC–QR method is to:

1. break up the sums in (3.1) and (3.2) into sums over the repre-
sentative particles Xj; j 2 fNr and over the simplices Dt ; t ¼
1; . . . ; T;

2. approximate the sum over the particles within an individual
simplex Dt by a weighted sum over only a subset of those
particles.

Let Nt ¼ fa 2N=fNrj Xa 2 Dtg denote the index set of the par-
ticles located inside or on the boundary of the simplex Dt that are
not representative particles, i.e., not located at the vertices. Because
all particles with positions specified by (1.1) have been chosen as
representative particles, the position of any particle whose index
belongs to Nt is not specified, i.e., Nt �Na, for t ¼ 1;2; . . . ; T . If a
particle is on the boundary between simplices but not at a vertex,
it can be arbitrarily assigned to one of the simplices. Then the sums
in (3.1) and (3.2) can be expressed in the form

G ¼
XT

t¼1

X
a2Nt

gðXaÞ þ
X
k2eNr

gðXkÞ;

Gj ¼
X
t2Tj

X
a2Nt

gðXaÞ þ gðXjÞ; ð3:3Þ

and

Sa ¼
XT

t¼1

X
b2Nt ;b–a

sðXa;XbÞ þ
X

k2eNr ;k–a

sðXa;XkÞ for a 2N: ð3:4Þ

In the following, we focus on the inner sums in (3.3) and (3.4). For
each simplex Dt , we choose a subset

Nt;q ¼
Nt if Nt 6 q

a q-dimensional subset of Nt otherwise;

�
ð3:5Þ

i.e., in the latter case, Nt;q consists of q particles chosen from among
the particles in the simplex Dt , where q depends on the ‘‘quadra-
ture” rule we use. Then the sum over the particles within the sim-
plex Dt can be approximated by a weighted sum over the subset of
particles whose indices belong to Nt;q, i.e., we haveX
a2Nt

gðXaÞ �
X

b2Nt;q

xt;bgðXbÞ; ð3:6Þ

andX
b2Nt

sðXa;XbÞ �
X

b2Nt;q

xt;bsðXa;XbÞ; ð3:7Þ

where Xb is the ‘‘quadrature” particle chosen in the simplex Dt and
xt;b denotes the corresponding ‘‘quadrature” weight. Roughly
speaking, the weight xt;b can be viewed as the number of particles
the quadrature particle Xb represents in the simplex Dt and is not
necessarily an integer. In particular, when Nt 6 q, since all particles
in the simplex Dt are chosen as the quadrature4 particles, we have
ype approximations to the quasicontinuum method for long-range inter-
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xt;b � 1 and the sums (3.6) and (3.7) are exact for any function gð�Þ
and sð�; �Þ.

When Nt > q, the basic requirement of selecting the quadrature
particles fXb : b 2Nt;qg is that they are in general position.5 This
requirement is necessary for the linear system defining the weights
to be invertible. The selection of the quadrature particle Xb and the
computation of its weight xt;b are done in the reference configura-
tion and thus are independent of the deformed positions of the par-
ticles. In addition, the same quadrature particles and weights can be
used for all the steps of an iterative solution process for the equilib-
rium position of the particles. Details about the selection of Xb and
the computation of xt;b are addressed in [19]; we only mention that
the selection is made so that the approximate sums in, e.g., (3.6) and
(3.7), agree with the exact sums for polynomials of a chosen degree.

3.2. The reduced equations of the QC–QR method

The function gð�Þ appearing in the summations G and Gj depends
only on the position of the particles so we can directly apply the
approximation (3.6) to the inner sums in (3.3) and obtain

G �
XT

t¼1

X
b2Nt;q

xt;bgðXbÞ þ
X
k2eNr

gðXkÞ; ð3:8Þ

Gj �
X
t2Tj

X
b2Nt;q

xt;bgðXbÞ þ gðXjÞ for j 2Nr : ð3:9Þ

Consequently, the complexity in evaluating the sum G reduces from
OðNÞ in (3.1) to OðqT þ eNrÞ in (3.8), where the number qT þ eNr de-
pends on the number of representative particles, the construction
of the triangulation, and the quadrature rule used, but is indepen-
dent of the total number of particles N. Similarly, the work involved
in calculating Gj becomes independent of Nj. For instance, in the
one-dimensional case, the complexity of (3.8) is of Oððqþ 1ÞeNrÞ
which is much smaller than the total number of particles N pro-
vided that eNr � N. In addition, the complexity of (3.9) is of
Oð2qþ 1Þ, which is a constant depending only on the number of
quadrature particles used in a simplex.

On the other hand, the function sð�; �Þ depends not only on the
position of the particle we consider but on its distance to the other
particles. Thus we cannot simply apply the approximation (3.7) to
all the simplices in (3.4), i.e., we have to take the distance between
particles into account when approximating the sum (3.4). Thus, in
the following, we divide our discussions for two cases: short-range
and long-range interactions.

If the interaction between particles is short-range, i.e., the mag-
nitude of the interaction potential decays very fast with respect to
the distance of two particles, we can neglect the interaction over
large distances and truncate the potential energy into a small re-
gion. Thus, we assume that [26]

jUa
a;bðxa;xbÞj ¼ 0 when jxa � xbj > rc; ð3:10Þ

where rc > 0 is the truncation radius of the potential energy, i.e., we
assume that there is no interaction between two particles whose
distance is larger than rc units. Let

NbðaÞ ¼ fb 2Nj0 < jxa � xbj 6 rcg ð3:11Þ

denote the index set of particles whose distance from particle a is
not larger than rc . Then the sum in (3.2) reduces to

Sa �
X

b2NbðaÞ

sðXa;XbÞ for a 2N: ð3:12Þ
5 A set of points in Rd is said to be in general position if no dþ 1 of them lie in a
ðd� 1Þ-dimensional hyperplane.
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Thus, for any particle a 2N, we only consider its interaction with
those particles located within its neighboring region and apply
the full atomistic resolution in that region. It is easy to see that,
in this case, the complexity of Sa in (3.2) reduces to OðNbðaÞÞ which
is independent of the total number of particles N; see [19] for a de-
tailed discussion.

On the other hand, if the interaction between particles is long-
ranged, the interaction potential decays slowly and cannot be ig-
nored even though the distance between two particles is large
[20]. In this case, we apply the full atomistic resolution in a
close-in region of particle a but, for the far-away region, the quad-
rature-rule type approximation is applied. To do this, we denote by

Ta;r ¼ t 2 f1; . . . ; TgjdistðXa;DtÞ 6 rc
� �

for a 2N ð3:13Þ

the index set of simplices whose distance from particle a is not lar-
ger than rc units. The distance between the particle a and a simplex
Dt is defined by

distðXa;DtÞ ¼max
b2Nt

jXb � Xaj:

Then in the case of long-range interactions, the summation in (3.2)
can be approximated by

Sa ¼
X

b2NbðaÞ

sðXa;XbÞ þ
X

bRNbðaÞ

sðXa;XbÞ

�
X

b2NbðaÞ

sðXa;XbÞ þ
X

tRTa;r

X
b2Nt;q

xt;bsðXa;XbÞ þ
X

k2eNr ;k–a

sðXa;XkÞ;

ð3:14Þ

where the index set NbðaÞ is defined in (3.11). Consequently, the
complexity in evaluating the summation Sa in (3.14) is bounded
by the number NbðaÞ þ qT þ eNr , which is independent of the total
number of particles N provided that the number NbðaÞ � N andeNr � N.

In fact, we can rewrite the approximation of Sa for the short-
range interactions in (3.12) and for the long-range interactions in
(3.14) in a uniform way, i.e.,

Sa �
X

b2NbðaÞ

sðXa;XbÞ þ
X

tRTa;r

X
b2Nt;q

xt;bsðXa;XbÞ þ
X

k2eNr ;k–a

xksðXa;XkÞ;

ð3:15Þ

where

xk � 0 and xt;b � 0; for short-range interactions
xk � 1; for long-range interactions:

�
By applying (3.8) and (3.15), respectively, to the outer and inner
summations appearing in the total potential energy (2.2), we obtain
the energy-based QC–QR method, i.e.,

Uhðfxh
kgk2eNr

Þ

�
XT

s¼1

X
a2Ns;p

xs;a
X

b2NbðaÞ

Ua
a;bðxh

a;x
h
bÞ

2
þ
X

k2eNr

xk
Ua

a;kðxh
a;x

h
kÞ

2

0B@
þ
X

tRTa;r

X
b2Nt;q

xt;b
Ua

a;bðxh
a;x

h
bÞ

2
þUe

aðxh
aÞ

1A
þ
X
j2eNr

X
b2NbðjÞ

Ua
j;bðxh

j ; x
h
bÞ

2
þ

X
k2eNr ;k–j

xk

Ua
j;kðxh

j ;x
h
kÞ

2

0B@
þ
X

tRTj;r

X
b2Nt;q

xt;b
Ua

j;bðxh
j ;x

h
bÞ

2
þUe

j ðxh
j Þ

1A ð3:16Þ
type approximations to the quasicontinuum method for long-range inter-
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subject to (1.1) and (2.1). In the approximation (3.16), we use p > 0
and q > 0 quadrature particles for the outer and inner summations,
respectively. Note that it is not necessary to require that p ¼ q even
on the same simplex Dt , i.e., we may use different quadrature rules
for the sums in (3.1) and (3.2).

Similarly, to determine the degrees of freedom, one can differ-
entiate the approximate energy in (3.16) with respect to the posi-
tion xh

i , for i 2Nr , and solve the resulting force equilibrium
equations. Alternatively, in practice we can work with the force-
based QC–QR method. It is obtained by applying the approximations
(3.9) and (3.15) to the equations in (2.4), i.e., for j 2Nr ,

P
s2Tj

P
a2Ns;p

xs;aw
h
j ðXaÞ

P
b2NbðaÞ

fa
a;bðxh

a; x
h
bÞ

 

þ
P

tRTa;r

P
b2Nt;q

xt;bfa
a;bðxh

a;x
h
bÞ þ

P
k2eNr

xkfa
a;kðxh

a;x
h
kÞ þ fe

aðxh
aÞ
!

þ
 P

b2NbðjÞ

fa
j;bðxh

j ;x
h
bÞ þ

P
k2eNr ;k–j

xkfa
j;kðxh

j ;x
h
kÞ

þ
P

tRTj;r

P
b2Nt;q

xt;bfa
j;bðxh

j ;x
h
bÞ þ fe

j ðxh
j Þ
!
¼ 0;

where xh
a ¼ x0

a if a 2Nf ; xh
a ¼

P
k2eNr

xh
kw

h
kðXaÞ if a 2Na:

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:
ð3:17Þ

Our numerical simulations suggest that, using the same iterative
solution method, the system (3.17) can yield the same solution as
that from the system obtained by explicitly differentiating (3.16).
However, using (3.17) requires substantially lower computational
time. Thus, in the following, we always refer to the system (3.17)
as the force equilibrium equations of the QC–QR method.

4. Error analysis

In this section, we analyze the accuracy and complexity of the
QC–QR method by using a simple one-dimensional (1D) mono-
atomic chain with N particles so that we have the index set
N ¼ f1; . . . ;Ng. In the reference configuration, all particles are uni-
formly distributed on a straight line with an interparticle distance
h. For simplicity, we choose h ¼ 1 and define the position of the
particle a by Xa ¼ ah ¼ a for a 2N. A triangulation Th ¼
fDtg

eNr�1
t¼1 is constructed with the uniform simplex size L ¼

ðN � 1Þ=ðeNr � 1Þ > 0, where eNr is the number of the representative
particles. Then the coordinate of the representative particle j is de-
noted by eXj ¼ ðj� 1ÞLþ 1 for j ¼ 1; . . . ; eNr and the simplices are
Dt ¼ ðeXj; eXjþ1Þ for t ¼ j ¼ 1; . . . ; eNr � 1. In the following, we assume
that the simplex size L� 1 so that eNr � N.

To analyze the accuracy the QC–QR method, especially in the
long-range interaction case, we choose the interaction potential as

Ua
a;bðXa;XbÞ ¼

j
jXa � Xbj

with j a constant; ð4:1Þ

and assume that Ue
aðXÞ ¼ 0 for a 2N, i.e., no external potential is

applied on the chain. On each simplex Dt , two quadrature particles
are used, and they are chosen to be on the Gaussian quadrature
points of this simplex, i.e.,

Xt;b ¼ Xj þ
1
2
	

ffiffiffi
3
p

6

 !
L for b ¼ 1;2: ð4:2Þ

Here, we assume that there exist particles exactly at these two
points. In practice, if this is not the case, one can choose the parti-
cles that are nearest to these quadrature points. Then the weights of
Xt;b can be calculated as
Please cite this article in press as: Y. Zhang, M. Gunzburger, Quadrature-rule t
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xt;1 ¼ xt;2 :¼ x ¼ L� 1
2

; ð4:3Þ

i.e., each quadrature particle represents ðL� 1Þ=2 particles within
the simplex Dt . Unless otherwise stated, we will always use two
quadrature particles for both the outer and inner summations, i.e.,
we set p ¼ q ¼ 2 in (3.16).

If we view the representative particles as simplices having only
one particle, then the interactions in the first term of the energy
(2.2) can be broken into the interactions between simplices. Thus,
without loss of generality, we consider the interaction between
two simplices Dt1 and Dt2 (see Fig. 1) and calculate the total poten-
tial energy S due to the interaction between particles Xa 2 Dt1 and
Xb 2 Dt2 . In this case, the QC method always gives the exact inter-
action potential energy, i.e., Sexact ¼ SQC. We assume that t2 P t1

and l ¼ t2 � ðt1 þ LÞ; see Fig. 1.
Then divide our discussion into the following three cases.

Case 1. l > 0, i.e., Dt1 and Dt2 are not neighboring simplices. In this
case, the energy by the QC method is
SQC ¼
Xt1þL�1

a¼t1þ1

Xt2þL�1

b¼t2þ1

Ua
a;bðXa;XbÞ ¼ j

XL�1

i¼1

X2Lþl�1�i

r¼Lþlþ1�i

1
r

¼ j
L� 1
lþ L

þ ðlþ 2L� 1Þ
Xlþ2L�2

r¼lþLþ1

1
r
� ðlþ 1Þ

XlþL�1

r¼lþ2

1
r

" #
: ð4:4Þ

Assume that l ¼ aL with a P 1 an integer. Then noting that L� 1,
we have

SQC � j
L� 1
lþ L

þ ðlþ 2L� 1Þ ln
lþ 2L� 2

lþ L
� L� 2

2ðlþ LÞðlþ 2L� 2Þ

� 	

�ðlþ 1Þ ln

lþ L� 1
lþ 1

� L� 2
2ðlþ 1Þðlþ L� 1Þ

� 	�
� j L a ln

ðaþ 2Þa
ðaþ 1Þ2

þ 2 ln
ðaþ 2Þ
ðaþ 1Þ

 !
þ 1

aþ 1

" #
:

It is easy to obtain the leading order of SQC as

SQC 
 jL a ln
ðaþ 2Þa
ðaþ 1Þ2

þ 2 ln
ðaþ 2Þ
ðaþ 1Þ

 !
when L� 1: ð4:5Þ

On the other hand, the QC–QR method gives that

SQC—QR ¼
X2

a¼1

xt1 ;a

X2

b¼1

xt2 ;bU
a
a;bðXt1 ;a;Xt2 ;bÞ

¼ x2
X2

a¼1

X2

b¼1

Ua
a;bðXt1 ;a;Xt2 ;bÞ

¼ j
L� 1

2

� 	2 2
lþ L

þ 1
lþ ð1þ

ffiffiffi
3
p

=3ÞL
þ 1

lþ ð1�
ffiffiffi
3
p

=3ÞL

" #
:

Similarly, when L� 1 and a P 1, the leading order of SQC—QR is

SQC—QR 
 jL
ðaþ 1Þ2 � 1=6

ðaþ 1Þðaþ 1�
ffiffiffi
3
p

=3Þðaþ 1þ
ffiffiffi
3
p

=3Þ

� jL
aþ 1

ðaþ 1�
ffiffiffi
3
p

=3Þðaþ 1þ
ffiffiffi
3
p

=3Þ
: ð4:6Þ

To compare SQC and SQC—QR, we define the relative error

eQC—QR ¼
SQC—QR � SQC

SQC

���� ���� ¼ SQC—QR � Sexact

Sexact

���� ����: ð4:7Þ

For a fixed simplex size L ¼ 500, Fig. 2 shows the results SQC; SQC—QR

and eQC—QR for different simplex distance l. We see that the relative
error eQC—QR decreases very fast when the distance between two
simplices increases. Thus when the distance l becomes sufficiently
ype approximations to the quasicontinuum method for long-range inter-
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Fig. 1. Two simplices Dt1 and Dt2 in the 1D monoatomic chain with L ¼ 11, where the ‘‘big” particles are the representative particles.
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Fig. 2. The approximate energies SQC and SQC—QR (left) and the relative error eQC—QR (right) for different simplex distance l, where the simplex size is fixed at L ¼ 500.
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large, the error of SQC—QR can be neglected and the QC–QR method
provides a good approximation. On the other hand, Fig. 2 (left)
shows that even though the distance l is large, the interaction po-
tential between two simplices is not negligible. For example, when
the distance l ¼ 104, the interaction potential S > 20, which is still
significant compared to S ¼ 1600 when l ¼ 0. This again suggests
that in the case of long-range interactions, the interactions from
far-away regions cannot be ignored.

Case 2. l ¼ 0, i.e., Dt1 and Dt2 are two neighboring simplices. Substi-
tuting l ¼ 0 into (4.4), we obtain

SQC ¼ j
L� 1

L
þ ð2L� 1Þ

X2L�2

r¼Lþ1

1
r
�
XL�1

r¼2

1
r

 !

� j
L� 1

L
þ ð2L� 1Þ ln

2ðL� 1Þ
L

� L� 2
4LðL� 1Þ

� 	

� lnðL� 1Þ � ð1� cÞ þ 1

2ðL� 1Þ

� 	�
;

where c � 0:5772 is the Euler–Mascheroni number. When L� 1,
the leading order of SQC is

SQC 
 2jL ln
2ðL� 1Þ

L

 jL ln 4: ð4:8Þ

Similarly, when l ¼ 0, we have

SQC—QR ¼ j
L� 1

2

� 	2 2
L
þ 1
ð1þ

ffiffiffi
3
p

=3ÞL
þ 1
ð1�

ffiffiffi
3
p

=3ÞL

" #
;

which implies the leading order

SQC—QR 

5
4
jL as L� 1: ð4:9Þ

When L� 1, the relative error between (4.8) and (4.9) is
eQC—QR � 0:098. In the above calculation, we use two-point quadra-
ture rule for both the inner and outer sums, i.e., p ¼ q ¼ 2 in (3.16).
In practice, to improve the accuracy of the QC–QR method, one may
use higher order quadrature rules, i.e., choosing p; q > 2. For exam-
ple, when L� 1, if we fix p ¼ 2, then
Please cite this article in press as: Y. Zhang, M. Gunzburger, Quadrature-rule
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SQC—QR 
 1:28jL and eQC—QR � 0:078; if q ¼ 3;
SQC—QR 
 1:30jL and eQC—QR � 0:062; if q ¼ 5:

Fig. 3 presents more results for different q and simplex size L, where
p ¼ 2 is fixed in (3.16). It shows that for a fixed simplex size L, the
more quadrature particles one uses, the smaller the error. On the
other hand, for a fixed number of quadrature particles q, when
the simplex size L is large enough, the error eQC—QR becomes almost
a constant which is independent of L. In this case, we consider a typ-
ical simplex distance l ¼ 0. In fact, for any l, using more quadrature
particles can always lead to a better approximation.

In addition, in the above two cases, i.e., l > 0 and l ¼ 0, the
computational complexity of the QC–QR method is of the order of
pq. It is independent of the simplex size L and much smaller than
the complexity of the QC method, which is OðL2Þ, especially when L
is very large.

Case 3. l < 0, i.e., Dt1 ¼ Dt2 :¼ Dt are the same simplices. In this
case, we have

SQC ¼
XtþL�2

a¼tþ1

XtþL�1

b¼aþ1

Ua
a;bðXa;XbÞ ¼ j

XL�2

i¼1

XL�1�i

r¼1

1
r

¼ j ðL� 1Þ
XL�2

r¼1

1
r
� ðL� 2Þ

" #

� j ðL� 1Þ lnðL� 2Þ þ cþ 1
2ðL� 2Þ

� 	
� ðL� 2Þ


 �
:

When L� 1, the leading order of SQC is

SQC 
 jL lnðL� 2Þ � ð1� cÞð Þ: ð4:10Þ

In this case, the QC–QR method gives that

SQC—QR ¼
X2

a¼1

xt;a

X
b2 NbðaÞ\Ntð Þ

Ua
a;bðXa;XbÞ

2
þ

X2

b¼1;b–a

x0t;b
Ua

a;bðXa;XbÞ
2

0B@
1CA

¼ j
L� 1

2

� 	
2

X
b2Nt ;0<jb�aj6rc

1
2jXb � Xaj

þ 2x0t;b
1

2
ffiffiffi
3
p

L=3

" #
;
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Fig. 3. The approximate energies SQC and SQC—QR (left) and the relative errors eQC—QR (right) for different simplex size L and different numbers of quadrature particles q, where
p ¼ 2 is fixed in (3.16).
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where the weight x0t;b is the number of particles the quadrature par-
ticle Xb represents, which are located inside of the simplex but their
indices do not belong to NbðaÞ. We can simply let

x0t;b ¼
L� 1� 2rc if 2rc < L� 1
0 otherwise:

�
As already mentioned, our motivation is to eliminate the depen-
dence of the calculation on the total number of particles N. Thus
only the case with rc � L is of interest. Assuming that rc � L, we
have, to the leading order,

SQC—QR 
 jL
Xrc

r¼1

1
r
þ

ffiffiffi
3
p

2

 !
; for L� 1 and rc � L: ð4:11Þ

Fig. 4 shows the results for SQC; SQC—QR, and eQC—QR for different sim-
plex size L and different values of the radius rc used in the QC–QR
method. We see that for a fixed simplex size L, the accuracy of
the QC–QR method can be greatly increased by using a larger radius
size rc . On the other hand, the computational cost of the QC–QR
method is of the order Oð4ðrc þ 1ÞÞ which is much smaller than
OðL2Þ, the complexity of the QC method, provided that L� 1 and
rc � L.
5. Numerical tests

In this section, we computationally test the accuracy and effi-
ciency of the quadrature-rule (QC–QR) type method by comparing
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Fig. 4. The approximate energies SQC and SQC—QR (left) and the relative errors eQC—QR
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it with the full atomistic method, the QC method and the cluster
summation (QC–CS) method. Comparisons for short-range interac-
tion problems between the QC–QR method and cluster summation
methods such as that discussed in [12] were presented in [19].
Here, we do not include such comparisons because cluster summa-
tion methods in general become dependent on the total number of
degrees of freedom (and not just on the number of representative
particles) for long-range interaction problems.

A simple one-dimensional monoatomic chain with N particles is
studied. The displacement and displacement gradient are defined
by

uðXÞ ¼ x� X and FðXÞ ¼ dx
dX
¼ Iþ du

dX
; ð5:1Þ

respectively, where I is the identity tensor, and X and x are the posi-
tions in the reference and a deformed configuration, respectively. To
quantify the accuracy, we define the position error

eL2 ðxÞ ¼ kx1 � x2kL2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x1 � x2ð Þ2

q
N

; ð5:2Þ

where x1 and x2 are the solutions obtained from the two different
methods being compared. The relative error in the energy is defined
by

eðUÞ ¼ jUðxÞ �UhðxhÞj
jUðxÞj ; ð5:3Þ
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(right) for different simplex size L and different radius rc in the QC–QR method.
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where x is the solution by the full atomistic method and xh is that
from the approximate methods, i.e., from the QC method or the
QC–QR method.

In our examples, we use a pairwise interaction potential. For the
case of short-range interactions, the 6–12 Lennard–Jones potential

Ua
LJðrÞ ¼ 4�0

r
r

� �12
� 2

r
r

� �6
� 	

for r ¼ jxa � xbj ð5:4Þ

is used [12,27] with �0 the parameter determining the depth of the
potential well and r the length scale determining the position at
which the potential attains its minimum. In the case of long-range
interactions, we use a simple combination of the Lennard–Jones po-
tential in (5.4) and the Coulomb potential so that the interaction po-
tential is given by

Ua
a;bðxa;xbÞ :¼ UaðrÞ ¼ Ua

LJðrÞ þUa
CðrÞ with r ¼ jxa � xbj; ð5:5Þ

where the Coulomb potential Ua
C takes the form

Ua
CðrÞ ¼

1
4p�1

qaqb

r
for r ¼ jxa � xbj: ð5:6Þ

The parameter �1 is the electrical permittivity of free space and qa
and qb are the electric charges carried by particle a and b, respec-
tively. Fig. 5 shows plots of the different interaction potentials de-
fined in (5.4)–(5.6).

In addition, an external potential is applied to this monoatomic
chain; it has the form

UeðxÞ ¼ AðR� xÞ2; ð5:7Þ

where A;R > 0 are two constants.
In the simulations, we use N ¼ 4096 particles and, in the refer-

ence configuration, all particles are uniformly distributed along a
straight line with an interparticle distance h ¼ 1. The two end-par-
ticles are fixed by requiring that uðX1Þ ¼ uðX4096Þ ¼ 0. The param-
eters in the potentials are chosen as �0 ¼ 1 and r ¼ 1 in (5.4),
�1 ¼ 0:01 and A ¼ 0:01=N and R ¼ N=2 in (5.7). The selection of
the representative particles and definition of the simplices are
the same as in Section 4. In the QC–QR method, on each simplex,
at most two quadrature particles are used for both the outer and
inner sums, i.e., we choose p ¼ q ¼ 2 in (3.16) and (3.17).

In the following plots, we use ‘‘FA” to denote results obtained
from the full atomistic method, i.e., (1.5) and (1.7). Similarly,
‘‘QC” denote results from the QC method, i.e., (2.2) and (2.4) and
‘‘QC–QR” from the QC–QR method, i.e., (3.16) and (3.17).
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Fig. 5. The interaction potential as a function of the distance between two particles,
with �0 ¼ r ¼ 1 in (5.4) and �1 ¼ 0:01 and jqaj ¼ jqbj ¼ 1 in (5.5) and (5.6).
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5.1. Example I. Short-range interactions

In this example, we consider short-range interatomic interac-
tions, using the potential defined in (5.4). Fig. 6 shows the FA dis-
placement uðXÞ and displacement gradient FðXÞ of the particle
chain. We see that the deformation is highly nonuniform due to
the external force.

To compare the QC–QR method with the QC method, we study
cases with different numbers of representative particles and calcu-
late the errors for both the positions and energy. For different num-
ber of representative particles, Fig. 7 plots the position error eL2 ðxÞ
of the QC and QC–QR methods and also the time consumed for
solving the force equilibrium equations; Fig. 8 displays the similar
results for the energy. To further compare, Fig. 9 shows the relation
between the error and the computing time.

Compared with the full atomistic method, the errors of the QC
and QC–QR methods both decrease when more representative par-
ticles are used. On the other hand, for the same number of repre-
sentative particles, the error of the QC–QR type method is always
larger than that of the QC method. This is because, for the QC meth-
od, the error only comes from the reduction of the number of de-
grees of freedom from Na to Nr through the use of the Cauchy–
Born rule and the use of representative particles whereas, for the
QC–QR method, it also includes the additional error caused by
using quadrature rules to approximate the sums in the QC method.

Fig. 7 (right) shows that the computational time of the QC
method is almost a constant for different numbers of representa-
tive particles eNr . Especially, the time used by the QC method in
evaluating the total energy is always the same for different eNr;
see Fig. 8 (right). In contrast, the time by the QC–QR method de-
creases very quickly when fewer representative particles are used.
Furthermore, Fig. 9 shows that, to obtain the same error, the compu-
tational time required by the QC–QR method is much lower than that
for the QC method. This is due to the fact that the costs associated
with the QC method are dominated by the summations over all
particles whereas the costs for the QC–QR method are mainly
determined by the number of representative particles. Thus the
fewer the representative particles, the smaller the cost for the
QC–QR method.

In addition, Fig. 10 shows the time used in solving the force
equilibrium equations and in evaluating the energy for different
number of particles N and representative particles eNr . For the QC
method, we see the quadratic dependence of the time with respect
to N, whereas for the QC–QR method we see that the time is rela-
tively insensitive to the value of N.

5.2. Example II. Long-range interactions

In some settings, interactions between particles are usually
composed of both the short-range and long-range types. Thus, in
this example, we use the potential in (5.5) and assume that all par-
ticles carry positive unit charges, i.e., qa ¼ þ1 for a 2N. Fig. 11
plots the FA displacement and displacement gradient of all parti-
cles. Figs. 12 and 13 illustrate the errors and the computing time
for the force equilibrium equations and the total energy, respec-
tively, with repect to different number of representative particles.
In addition, Fig. 14 shows the relation between the errors and the
computing time used by the QC and QC–QR methods. Fig. 15 shows
the time used in solving the force equilibrium equations and in
evaluating the energy for different number of particles N and rep-
resentative particles eNr . For the QC method, we see the quadratic
dependence on N of the time used; this effect is so dominant that
the number of representative particles hardly affects the time used.
On the other hand, for the QC–QR method, we see that for a fixed
number of representative particles, the time used is largely inde-
pendent of the number of particles N and is generally much lower
type approximations to the quasicontinuum method for long-range inter-
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Fig. 8. Relative energy errors (left) and the time used in evaluating energy (right) for different numbers of representative particles in the short-range interaction case, where
the total number of particles N ¼ 4096.
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than the time used in the QC method. We now do see a dependence
on the number of representative particles as is expected because
now the cost is no longer dominated by calculations that have
complexity dependent on N. These results illustrate the important
Please cite this article in press as: Y. Zhang, M. Gunzburger, Quadrature-rule t
atomic interactions, Comput. Methods Appl. Mech. Engrg. (2009), doi:10.1016
point that the complexity of the QC–QR method, even in the long-
range interaction case, is independent of the total number of particles.

Due to the long-range Coulomb interactions, the displacement
in Fig. 11 is quite different from that in Fig. 6 where only the
ype approximations to the quasicontinuum method for long-range inter-
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Fig. 9. The errors versus the time used for the corresponding calculation in the short-range interaction cases, where the total number of particles N ¼ 4096.

10 Y. Zhang, M. Gunzburger / Comput. Methods Appl. Mech. Engrg. xxx (2009) xxx–xxx

ARTICLE IN PRESS
Lennard–Jones interatomic potential is applied. In fact, for each
particle a 2N, in the close-in region, the interaction is still domi-
nated by the Lennard–Jones potential; this is also indicated by
Fig. 5. But, for the far-away region, the dominant force becomes
the Coulomb force and it cannot be neglected. Furthermore, since
all particles have positive unit charge, the force on particle a due
to the interaction with the particles on the same side are all repul-
Please cite this article in press as: Y. Zhang, M. Gunzburger, Quadrature-rule
atomic interactions, Comput. Methods Appl. Mech. Engrg. (2009), doi:10.1016
sive. Consequently, the particle a may have strong accumulated
repulsive forces from both sides. As a result, the position of particle
a is determined by the competition between the short-range Len-
nard–Jones force, the accumulated Coulomb repulsive forces, and
the external force.

Again, to achieve the same error, the QC–QR method needs much
less time than the QC method. For the same number of representative
type approximations to the quasicontinuum method for long-range inter-
/j.cma.2009.10.015
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Fig. 13. Relative energy errors (left) and the time used in evaluating energy (right) for different numbers of representative particles in the long-range interaction case, where
the total number of particles N ¼ 4096.
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Fig. 14. The errors versus the time used for the corresponding calculation in the long-range interaction cases, where the total number of particles N ¼ 4096.
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particles, we find that the relative error in energy of the long-range
interaction case is bigger than that of the short-range interaction
case. This may be caused by the approximation of the interactions
from far-away regions. To reduce this error, a higher order quadra-
ture rule can be considered in (3.16), e.g., by choosing p > 2 and
q > 2.
Please cite this article in press as: Y. Zhang, M. Gunzburger, Quadrature-rule t
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6. Summary and discussion

We have presented quadrature-rule (QC–QR) type approxima-
tions to the quasicontinuum (QC) method and illustrated their
effectiveness for both short-range and long-range interatomic
interaction problems. Compared to the full atomistic method, the
ype approximations to the quasicontinuum method for long-range inter-
/j.cma.2009.10.015
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Fig. 15. The time used in solving the force equilibrium equations (left) and in evaluating the energy (right) for different number of particles N in the long-range interaction
case; solid line: eNr ¼ 65; dashed line: eNr ¼ 17.
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QC method has fewer degrees of freedom but its computational
complexity still depends on N, the total number of particles; in fact,
the complexity is of OðN2Þ. On the other hand, QC–QR methods
have computational costs that depend on the number of represen-
tative particles but not on the total number of particles. Thus, these
methods have much lower computational costs compared to the
QC method.

Numerical examples were presented to test the accuracy and
efficiency of the QC–QR method. Compared to the QC method,
the QC–QR method has sufficient accuracy but its computational
time is much shorter than that of the QC method. Especially, the
QC–QR type method is much faster when approximating the total
energy, and its computational complexity depends on the number
of representative particles. The fewer the representative particles,
the shorter the computational time needed. In summary, for the
same error and for both short and long-range interactions, the
QC–QR method is much less costly than the QC method, and also,
as is demonstrated in [19], cluster summation approximations of
the QC method.

Of course, a much greater array of tests in two and three dimen-
sions are needed to ultimately provide convincing evidence about
the efficacy of QC–QR methods; this is the subject of future work.
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