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Precise manipulations of nonspherical microparticles by shape have diverse applications in biology
and biomedical engineering. Here, we study lateral migration of ellipsoidal paramagnetic microparticles in
low-Reynolds-number flows under uniform magnetic fields. We show that magnetically induced torque
alters the rotation dynamics of the particle and results in shape-dependent lateral migration. By adjusting
the direction of the magnetic field, we demonstrate versatile control of the symmetric and asymmetric
rotation of the particles, thereby controlling the direction of the particle’s lateral migration. The particle
rotations are experimentally measured, and their symmetry or asymmetry characteristics agree well with the
prediction from a simple theory. The lateral migration mechanism is found to be valid for nonmagnetic
particles suspended in a ferrofluid. Finally, we demonstrate shape-based sorting of microparticles by
exploiting the proposed migration mechanism.
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I. INTRODUCTION

In biology, shapes are an intrinsic biomarker of
bioparticles [1], with examples including rodlike E. coli,
disk-shaped red blood cells, and budding yeast cells. There
is a critical need to manipulate nonspherical biological
particles according to shapes in biomedical and biology
applications because the shapes may be used as an indicator
of the development stage or health status of the bioparticles.
For instance, in researching eukaryotic-cell reproductions
[2], yeast cells (commonly used model cells) need to be
isolated based on their development stages, which can be
identified by their shapes [3]. Malaria and sickle-cell
anemia are accompanied with the changes of red blood
cells from disk shapes to other shapes [4,5].
Traditional separationmethods, such as size exclusion and

mass- or density-based purification, are effective in separat-
ing microparticles by size. However, they are less effective
for separating particles by shape [6]. Nonspherical micro-
particles, which are often suspended in fluid environments
(e.g., biological fluids or culture media), are hard to separate
by shape, for two reasons. First, nonspherical particles rotate
in flows and present themselves with many possible sizes,
rendering size-exclusion techniques (e.g., filtering) ineffec-
tive. Second, the sedimentation speed, due to centrifugal
force, depends on both the particle orientation and the
particle shape. Thus, even for particles of the same shape
and size, the sedimentation speed may be different, making
centrifugation less useful for separating nonspherical par-
ticles. More recently, microfluidic techniques—both passive
and active methods—have demonstrated great potential as

the next-generation technology for separating cells and
particles. However, a majority of themicrofluidic techniques
[7–9] are designed for microparticles having approximately
spherical shapes. As a result, the capability of distinguishing
shapes remains absent.
Recognizing the urgent need, a few studies have reported

methods to achieve shape-based separation based on micro-
fluidics. These efforts have included hydrodynamic filtering
using branched channels [10] and obstacle arrays [11,12],
inertia lift [13,14], dielectrophoresis (DEP) [15,16], visco-
elastic fluids [17,18], and magnetophoresis in ferrofluids
[19]. Although effective (to some extent), these methods
have their limitations. The hydrodynamic approaches require
sophisticated designs of highly complex branched channels
[10] and high-resolution arrays comparable to the smallest
dimension of particle size [12]. The inertia-based techniques
[20] operate at high flow rates, which can be a challenge
when samples are precious and available only in small
quantities. DEP requires the integration of active electrode
elements, and a precise and reproducible control of the buffer
conductivity between each experiment [15,16]. The use of
viscoelastic fluids requires a subtle and sensitive balance
between elastic lift and inertia forces [17,18]. The negative-
magnetophoresis method reported by Zhou and Xuan [19]
relies on a nonuniform magnetic field, as well as on shape-
dependent magnetic and drag forces, both of which are
difficult to predict analytically. In addition, the magnetic
forces require a well-controlled magnetic field gradient,
which is challenging to implement for microscale devices.
In this work, we demonstrate an alternative shape-

dependent migration mechanism of rigid ellipsoidal micro-
particles in combined magnetic and flow fields. It is shown
that in the regime of weak magnetic strength, the symmetry*wancheng@mst.edu
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property of the particle rotation is modified due to the
magnetically induced torque, and it depends on the direction
of the appliedmagnetic field. This finding can also be in good
analogy with deformable particles, such as red blood cells
(RBCs). For example, RBC deformability results in an
averaged asymmetric shape and leads to a nonzero lift and
migration law similar to the one known for a fixed shape and
orientation [21]. Therefore, themechanism in this paper could
be extended to soft or deformable bioparticles, though defor-
mable particles are expected to have much more complex
motion in shear flows [22–25]. In our study, coupled with
hydrodynamic interactions with the wall, the magnetic field
can result in directional control of the lateral migration of the
ellipsoidal particles: (1) lateral migration toward, (2) away
from the channel center, or (3) negligible lateral migration. In
the regime with a stronger magnetic effect, the particles
assume a quasi-steady-state angle. Using high-speed imag-
ing, we experimentally quantify the rotation dynamics
of single particles, which is in good agreement with the
prediction of a simple theory.
We further demonstrate particle separation by shape by

using the shape-dependent migration mechanism. Such a
separationmethod is different fromexistingmethods that are
based on magnetic forces [26–28], which are largely depen-
dent on particle size or volume, but not on shape. Because of
the uniform magnetic field [29], in our method, there is no
magnetic force acting on the particles. Rather, the shape-
dependent magnetic torque controls the particle rotation and
induces shape-dependent separation. The approach demon-
strated here is applicable to both magnetic and nonmagnetic
microparticles, including bioparticle complexes resulting
from a binding of nanomagnetic particles to cells, and
naturally existing diamagnetic (nonmagnetic) bioparticles.
Particularly, shape-based manipulations can be realized by
suspending these nonmagnetic bioparticles in ferrofluids
[30–32], thanks to recent progress in biocompatible ferro-
fluids [33,34].

II. EXPERIMENTAL SETUP

In our experiments, as depicted in Fig. 1(a), a micro-
fluidic device is placed in the center of a uniform magnetic
field of strengthH0 ≈ 35 000 A=m, which is generated by a
Halbach array [35]. The microfluidic device is fabricated in
polydimethylsiloxane following a previously reported soft
lithography technique [36]. The width, the depth, and the

total length of the microfluidic channel are wc ¼ 50 μm,
dc ¼ 35 μm, and L ¼ 20 000 μm, respectively, as shown
in Fig. 1(b). The microfluidic device consists of two inlets
in Figs. 2(a)–2(d) or three inlets in Figs. 2(e)–2(h), and
one outlet for all of the channels. The sample ellipsoidal
particles used in this work are magnetite-doped and un-
cross-linked polystyrene microparticles. They are prepared
from the original spherical paramagnetic particles by using
the film-stretching approach of Ho et al. [37]. The aspect
ratio of the ellipsoidal particles is rp ¼ 4� 0.4, as mea-
sured from microphotographs. The mean diameter of the
spherical paramagnetic particles is d ¼ 7 μm (coefficient
with a variation < 5%, Micromod GmbH, Germany), its
density is ρp ¼ 1100 kg=m3, and its magnetic susceptibil-
ity is χp ≈ 0.26 [38].
Figure 2 demonstrates the particle migration without

a magnetic field (H0 ¼ 0) and with a magnetic field of
strength H0 ≈ 35 000 A=m oriented at three different direc-
tions (indicated by the angle α). Two or three syringe pumps
(NE-300, New Era and KDS 200, KDS Scientific) are used to
control the flow rate of each inlet. In Figs. 2(a1)–2(d1), inlet 1
is injected with a 40-wt % aqueous-glycerol solution at a
flow rate Q1 ¼ 1.0 μl=min to work as buffer flow, while
inlet 2 is injected with a 40-wt % aqueous-glycerol
solution containing sample particles at a flow rate Q2 ¼
0.2 μl=min. The particles are centered in the midplane
(in the z direction) because the external magnetic field’s
central plane is aligned with the midplane (in the z
direction) of the flow field. The 40-wt % glycerol solution
and the sample particles are density matched to prevent
particle sedimentation. The aqueous-glycerol solution
has a density ρf ≈ 1.1 × 103 kg=m3 and a viscosity ηf≈
0.0037 kg=ðmsÞ. Similarly, in Figs. 2(e1)–2(h1), inlets 1
and 3 are injected with glycerol solutions at flow rates
of Q1 ¼ Q3 ¼ 0.5 μl=min, while inlet 2 is injected with
a glycerol solution with particles at a flow rate Q2 ¼
0.2 μl=min. The Reynolds numbers are small for typical
experimental conditions: flow Reynolds number Re ¼
½ðρfUDhÞ=ηf� ∼ 0.1, where Dh is the hydraulic diameter
of the channel, and particle Reynolds number Rep ¼
ðdp=DhÞ2Re ∼ 0.01, where dp is the equivalent spherical
diameter of the particle. Note that the definition of Rep,
which was introduced by Ho and Leal [39], accounts for
the moving velocity of the particles and is different from
the one often used for a stationary particle.

(a) (b)

flow
m m

m

FIG. 1. (a) Schematic illustration of the
microdevice located in a uniform mag-
netic field generated by a Halbach array.
(b) 3D schematic of the microfluidic
channel.
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To record the trajectories of the paramagnetic particles
during the experimental process, the microfluidic devices
are mounted on an inverted microscope stage (IX73,
Olympus). A high-speed camera (Phantom Miro M310,
Vision Research) is used to capture high-speed videos up to
10 000 frames=s. IMAGEJ [40] and custom MATLAB codes
are used to extract and analyze the orientation and position
information of the particles from the experimental videos.
As can be seen in Fig. 2, when α ¼ 0 and α ¼ 5π=12, the

ellipsoids migrate toward and away from the channel
center, respectively. When H0 ¼ 0 or α ¼ 3π=4, particles
exhibit no observable lateral migration between the inlet
and the outlet. The directional migration of the particle
under the influence of the magnetic field are rather
interesting because these particles experience zero mag-
netic force in a uniform magnetic field [29], no matter in
which direction the magnetic field is imposed. How does it
happen? In the rest of this paper, we focus on understanding
this alternative particle-migration mechanism.

III. THEORETICAL ANALYSIS

In this section, we present a simple theoretical analysis
on particle rotation in a simple shear flow bounded by a
solid wall in the presence of a uniform magnetic field. Note
that the model is different from the actual experiments.
Moreover, the particle dynamics in bounded flows—not to
mention the nonspherical shape, the confinement effect,
and the nonlinear velocity profiles—is inherently complex.
Thus, a quantitative prediction of the migration velocity
would require full 3D numerical modeling. However, the

purpose of the model presented herein is to provide a
qualitative understanding of the effect of the magnetic
field (its magnitude and direction) on the observed lateral
migration of the particles.

A. Ellipsoidal particles in shear flows

Consider a prolate ellipsoidal particle (with semimajor
axis a and semiminor axes b ¼ c) that is transported by a
simple shear flow u ¼ _γy, with _γ denoting the shear rate,
as shown in Fig. 3(a). A particle that lies in the x-y plane
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FIG. 2. Overview of the particlemigration. (a)–(d) Particle distributions at the inlet and the outlet when they are injected from the bottom
part of the channel under the condition (a) without an external magnetic field or (b)–(d) with the orientation of a magnetic field is α ¼ 0,
α ¼ 5π=12, and α ¼ 3π=4. (e)–(h) Particle distributions at the inlet and the outlet when they are injected from the central part of the
channel under a similar condition as (a)–(d). The total flow rates are Qt ¼ 1.2 μl=min for each group, and H0 ≈ 35 000 A=m in
(b)–(d) and (f)–(h).

(a)

(b) (c)

FIG. 3. (a) Illustration of a prolate ellipsoidal particle in a wall-
bounded shear flow. (b) Evolution of angleϕvs time. (c)Oscillatory
motion of the particle centroid in the y direction, yc, over a π period.
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rotates periodically. It is assumed that both fluid and
particle inertia are negligible, based on typical experimental
conditions. The particle rotation can be approximately
described by Jeffreys’s theory [41–43], even though the
theory has been developed for particles in an unbounded
flow. As shown in Fig. 3(b), the angular velocity of the
particle is [44]

ωh ¼
dϕ
dt

¼ _γ
ðr2p cos2 ϕþ sin2 ϕÞ

r2p þ 1
; ð1Þ

where ϕ is the angle measured from the velocity-gradient
direction, and rp ¼ a=b is the particle aspect ratio. The
period over a rotation of 2π in an unbounded flow is
T0 ¼ 2πðrp þ r−1p Þ=_γ. A correction factor may be used to
account for the increasing resistance due to the wall
effect [43].
Different from unbounded flows, the presence of the wall

induces a nonzero lift velocity perpendicular on nonspheri-
cal particles to the wall [42,45]. This lift velocity is due to a
vertical force arising from the coupling of the rotational
and translational motion and their hydrodynamic inter-
actions with the wall. Numerical calculations show that the
lift force is an antisymmetric function of ϕ with respect
to ϕ ¼ π=2 [42]. As a result, the particle centroid osci-
llates away and toward the wall over a rotation cycle of π
[41,45–49], as illustrated in Fig. 3(c). The amplitude of the
oscillatory motion depends on the particle-wall separation
distance, shear rate, and particle shape. In the absence of
external force fields and particle inertia, the nonspherical
particles have a zero net lateral migration during one period
of rotation [41,42,47].

B. Ellipsoidal particles in combined flow
and magnetic fields

When subject to an externally applied magnetic field, the
particle will experience a torque, provided that the particle
and the surrounding fluid have different magnetic suscep-
tibilities [29]. In a uniform magnetic fieldH0, the magnetic
torque is Tm ¼ μ0

R
Vp
½ðMp −MfÞ ×H0�dV, where μ0 ¼

4π × 10−7N=A2 is the magnetic permeability of the vac-
uum, Mp and Mf are the magnetization of the particle and

the fluid, and Vp is the volume of the particle. Assuming
that the particle and the fluid are homogeneous, isotropic,
and linearly magnetizable, the magnetic torque due to the
uniform magnetic field is Tm ¼ μ0Vpðχp − χfÞH− ×H0,
where H− is the magnetic field inside the particle and χp
and χf are the magnetic susceptibilities of the particle and
the fluid, respectively [29,50].
In the experiments, the applied magnetic field H0 is

parallel to the x-y plane and is directed at an angle α to the
positive y axis [in Fig. 1(b)]. Thus, we restrict our analysis
to particles lying in the x-y plane. It can be shown that the
magnetic torque in the x-y plane (i.e., about the z axis) is

Tmz ¼ −
1

2
Vp

×
μ0ðχp − χfÞ2H2

0ðDyy −DxxÞ sinð2ϕ − 2αÞ
½1þ χf þ ðχp − χfÞDxx�½1þ χf þ ðχp − χfÞDyy�

;

ð2Þ

where H0 denotes the magnitude of the applied magnetic
field, Dxx and Dyy are the diagonal components of the
ellipsoidal demagnetizing factor D, and Dxx¼1−A,
Dyy¼A=2, with A denoting the elliptical integral. For a pro-
late ellipsoid, A¼½r2p=ðr2p−1Þ�−½rpcosh−1rp=ðr2p−1Þ3=2�
[51]. In Eq. (2), Dxx and Dyy are both less than 1. The
magnetic susceptibility χ is positive for paramagnetic or
ferromagnetic materials, and only marginally smaller than
zero (≤ −10−3) for diamagnetic materials. It is clear that the
magnetic torque will have the same sign due to the depend-
ence on ðχp − χfÞ2, for both diamagnetic particles in a
ferrofluid or paramagnetic particles in a diamagnetic fluid.
With negligible particle inertia and wall effect, the

angular velocity ωm, due to the magnetic torque, is [52]

ωm ¼ −
�
μ0H2

0

η

�
ðχp − χfÞ2 sinð2ϕ − 2αÞλðrp; χp; χfÞ;

ð3Þ

where η is the dynamic viscosity of the suspending
fluid, and

λðrp; χp; χfÞ ¼
ðrp2Dxx þDyyÞðDyy −DxxÞ

4ðrp2 þ 1Þ½ð1þ χfÞ þ ðχp − χfÞDxx�½ð1þ χfÞ þ ðχp − χfÞDyy�
: ð4Þ

The particle rotation due to the hydrodynamic and magnetic
effects is additive [53], and thus the total angular velocity is
ωc ¼ ωh þ ωm.Weobserve thatωh varies from _γ=ðr2pþ1Þ to
r2p _γ=ðr2pþ1Þ, while ωm varies from−f½μ0H2

0ðχp − χfÞ2�=ηg
λðrp; χp; χfÞ to þf½μ0H2

0ðχp − χfÞ2�=ηgλðrp; χp; χfÞ. A di-
mensionless parameter S is thus defined to measure the
relative strength between the magnetic and flow fields,

S ¼ μ0ðχp − χfÞ2H2
0

η_γ
ðr2p þ 1Þλðrp; χp; χfÞ: ð5Þ

The magnetic torque tends to align the major axis of the
particle to the direction of the magnetic field. As a result,
ωh and ωm may oppose or assist each other for different
ranges of ϕ during the rotation. When the magnetic field is
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sufficiently strong, it can completely impede the rotation of
the particle. In other words, the particle stops rotating if
there exists a physically meaningful solution to ωc ¼
ωh þ ωm ¼ 0. Denoted as Scr, the critical value of S for
the existence of real solutions to ωc ¼ 0 can be found to be

Scr ¼
1

2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2p − 1Þ2 sin2ð2αÞ þ 4r2p

q
− ðr2p − 1Þ sinð2αÞ

i
:

ð6Þ

When S < Scr, the particle executes complete rotations.
Let Tc represent the period of rotation for ϕ from 0 to π.
Then we can find that, by numerical integration,

Tc ¼
Z

π

0

dϕ
ωc

¼ ðr2p þ 1Þ
_γ

×
Z

π

0

dϕ
ðr2pcos2ϕþ sin2ϕÞ − S sinð2ϕ − 2αÞ : ð7Þ

The time taken fromϕ from0 to2πwill be2Tc because of the
fore-aft symmetry of the ellipsoidal particles. The magnetic
torque not only influences the angular velocity and rotational
period but also breaks the symmetry property of the particle
rotation. In an earlier study, asymmetric particle rotation was
reported for an electric field perpendicular to the flow
direction [53]. Under this electric field, the particle spent a
longer time for the rotation fromϕ ¼ 0 to π=2 than that from
π=2 toπ [53]. In this study, the direction of themagnetic field,
characterizedby the angleα, is arbitrary; thus, its effect on the
particle rotation needs to be understood. Let T 0

c be the time
taken for the particle to rotate from ϕ ¼ 0 to ϕ ¼ π=2, i.e.,

T 0
c ¼

ðr2p þ 1Þ
_γ

Z
π=2

0

dϕ
ðr2pcos2ϕþ sin2ϕÞ − S sinð2ϕ − 2αÞ :

ð8Þ

To characterize the symmetry or asymmetry of the particle
rotation, we introduce a ratio parameter τ as

τ ¼ T 0
c

Tc
; ð9Þ

which can be calculated from Eqs. (7) and (8).
For a given S < Scr, of particular interest is the effect of

the direction of the magnetic field on τ, i.e., the dependence
of τ on α. As shown in Fig. 4, we observe that (a) τ > 0.5
when 0 < α < π=4 or 3π=4 < α < π, (b) τ < 0.5 when
π=4 < α < 3π=4, and (c) τ ¼ 0.5 when α ¼ π=4 or
α ¼ 3π=4. Moreover, τ grows farther away from 0.5 as
S increases, meaning that the asymmetry of the rotation is
more prominent because a larger S represents a stronger
magnetic effect relative to the hydrodynamic effect.
When S > Scr, the particle cannot execute complete

rotations. The particle will then assume a steady (or

quasisteady) orientation at ϕ ¼ ϕs. The steady angle ϕs

can be determined by solving ωc ¼ 0, which gives two
solutions,

ϕs
� ¼ arctan

�
S cos ð2αÞ �Qα

½1 − S sin ð2αÞ�
�
; ð10Þ

where Qα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ S sin ð2αÞðrp2 − 1Þ − rp2

q
. The stabil-

ity of the two solutions can be determined by evalua-
ting dωc=dϕ at ϕs

�. By numerical computation, it is
found that ½ðdωcÞ=dϕ�jϕs

þ
is always negative; thus,

ϕsþ ¼ arctan f½S cos ð2αÞ þQα�=½1 − S sin ð2αÞ�g is the
stable steady angle. The other solution, ϕs

− ¼
arctan f½S cos ð2αÞ −Qα�=½1 − S sin ð2αÞ�g, is unstable due
to ½ðdωcÞ=dϕ�jϕs

−
> 0 (see Appendix A).

C. Implications of symmetry of particle rotation
on lateral migration

In the absence of magnetic fields, the particles rotate
periodically and spend equal amounts of time for 0 < ϕ <
π=2 and π=2 < ϕ < π, i.e., τ ¼ 0.5. Owing to the non-
spherical shapes of the particles and the hydrodynamic
interactions with the wall [42], the particles experience an
orientation-dependent lift force along the y direction,FLðϕÞ.
The particle centroids oscillate in the y direction but have
a zero migration over one complete period [45,46,48,49]
because of the symmetric rotation of the particle.
In the presence of magnetic fields and with S < Scr, the

particle rotation now has three possible regimes: τ > 0.5,
τ < 0.5, or τ ¼ 0.5. Owing to a change of the symmetry
property of the particle rotation, we expect that the broken
symmetry can cause a change of the net lateral migration of
the particles. We hypothesize that the rotation asymmetry
will result in one of three outcomes: (i) a net lift force
toward the channel center (the region of lower shear) when
τ > 0.5, (ii) a net lift force toward the channel wall (the
region of higher shear) when τ < 0.5, or (iii) a zero net lift
force when τ ¼ 0.5. However, because of the complex
particle-wall hydrodynamic interaction, the nonspherical
particle shape, and the finite size of the particle, it is

α

τ

FIG. 4. Relationship curve between τ and magnetic-field
orientation α.
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difficult to obtain analytical solutions of the lateral migra-
tion velocity even in simple flow configurations [42].
Here, we use numerical simulations to assess the effect of τ

on the lateral migration of the particle. Assuming negligible
fluid and particle inertia, we decompose the particle-fluid
problem by linear superposition into four steady-state prob-
lems: (a) a simple shear flow uf ¼ _γy over a stationary
particle, (b) a particle rotating at ωp in a quiescent fluid, (c) a
particle translating at up in the x direction in a quiescent fluid,
and (d) a particle translating to vp in the y direction in a
quiescent fluid. In the simulations, the particle is held fixed at
(x0, y0, z0), while the orientation of the particleϕ is allowed to
change from 0 to π. Owing to negligible particle inertia, the
particle motion is quasisteady; thus, the total force and torque
are both zero, allowing us to find the particle velocitiesup and
vp to satisfy the force-free and torque-free conditions. Similar
approaches have been used in previous studies to find the lift
force on spherical [20] and nonspherical particles [42]. Note
that vp would be the lateral migration velocity if the particle
were allowed to move in the y direction. By choosing a set of
parameters (S, rp, _γ, x0, y0, z0) and varying α, our numerical

simulations show that (i)
R Tc
0 vpdt > 0 when τ > 0.5,

(ii)
R Tc
0 vpdt < 0 when τ < 0.5, and (iii)

R Tc
0 vpdt ≈ 0 when

τ ¼ 0.5 (see Appendix B).

IV. RESULTS AND DISCUSSION

A. Rotation and lateral migration of particles

Figures 5(a1)–5(a4) are the stacked images obtained froma
series of high-speed videos taken at 10 000 frames=s,
and they show particle rotations over a complete π period
under different experimental conditions. These conditions
include H0¼ 0 [Fig. 5(a1)], H0≈35000A=m and α ¼ 0
[Fig. 5(a2)], H0 ≈ 35000 A=m and α ¼ 5π=12 [Fig. 5(a3)],
and H0 ≈ 35000 A=m and α ¼ 3π=4 [Fig. 5(a4)]. The
experimentally measured ϕð~tÞ values within a π period are
summarized in Figs. 5(b1)–5(b4). To compare the difference
of the particle rotations, the dimensionless time ~t ¼ t=Tc is
used here. We also measure the y position of the particle
centroid over a period of rotation and estimate the vertical
velocities, as shown in Figs. 5(c1)–5(c4).
When H0 ¼ 0, the particle rotation compares well with

the prediction of the Jeffreys theory, as can be seen in
Fig. 5(b1). The particle spends about an equal amount of
time from ϕ ¼ 0 to ϕ ¼ π=2, and ϕ ¼ π=2 to ϕ ¼ π, i.e.,
t1 ¼ t2. The particle centroid shows oscillatory motion in
the y direction [Fig. 5(c1)], and the net lateral migration in
the y direction is approximately zero. The measurements
are consistent with findings from earlier numerical and
theoretical studies [42,46].

(a1) 0 0 0 0

3 4125
0

0

25 ( m)

35 000 (A/m) 35 000 (A/m) 35 000 (A/m)
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0 00

00

.
.

.
.

.
.

.
.

(c1)

2.40

36.97
−19.81 4.73
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5 12 43

(c2) (c3) (c4)

(b2) (b3)

12

0 5 12 43

435

(b4)

(a2) (a3) (a4)

FIG. 5. The rotational and translational dynamics of ellipsoidal particles. (a1)–(a4) Superimposed images for H0 ¼ 0 and H0 ≈
35000 A=m with magnetic-field orientation α ¼ 0, α ¼ 5π=12, and α ¼ 3π=4, respectively. (b1)–(b4) The experimental and numerical
angles of ellipsoidal orientation ϕð~tÞ within a π period. The symbols represent experimental measurements, and the solid lines represent
the numerical solution according to Eq. (7). (c1)–(c4) The experimental measurements of the y position of a particle centroid (yc) over
one rotational period, and their linear fitted curves corresponding to the particles in (a1)–(a4). The slopes k of the linear fitted curve
represent the lateral velocities.
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With a magnetic field applied, the characteristics of
the particle rotation become different, as shown in
Figs. 5(b2)–5(b4). The evolution of angle ϕ as a function
of time now depends on the direction of the applied
magnetic field. Here, we focus on the symmetry or
asymmetry of the particle rotation. When α ¼ 0, the
particle spends a longer time from ϕ ¼ 0 to ϕ ¼ π=2,
i.e., t01 > t02 (τ > 0.5), as shown in Fig. 5(b2). The
oscillatory motion of the particle seems to closely corre-
late with the particle rotation [Fig. 5(c2)]. The particle
migrates toward the channel center for a longer duration
compared to that of the case H0 ¼ 0. The broken asym-
metry of the rotation leads to a net lateral migration. When
α ¼ 5π=12, the time spent from ϕ ¼ 0 to ϕ ¼ π=2, and
ϕ ¼ π=2 to ϕ ¼ π has the relation of t5π=121 < t5π=122 (i.e.,
τ < 0.5) in Fig. 5(b3). As a result, the particle shows a net
migration toward the channel wall [Fig. 5(c3)]. For the
case of α ¼ 3π=4, t3π=41 ¼ t3π=42 (τ ¼ 0.5), as shown in
Fig. 5(b4). The net lateral migration of the particle is more
or less zero over one rotation cycle [Fig. 5(c4)].
In an attempt to estimate the vertical velocities, the

experimental data are fitted by linear lines so that the
slopes (ky, k0y, k

5π=12
y , and k3π=4y ) represent the net vertical

velocities over a π period, as shown in Figs. 5(c1)–5(c4).
The superscripts denote the direction of the magnetic
field. In the absence of a magnetic field [Fig. 5(c1)], ky is

as small as k3π=4y in Fig. 5(c4), and the vertical velocities in
these two cases are at least 5 times smaller than in the other
two cases. Furthermore, Fig. 5(c2) shows that k0y is positive
and much larger than the slopes in other situations, indicat-
ing that the particles migrate toward the channel center
when α ¼ 0. When the orientation of the magnetic field
is α ¼ 5π=12, the negative k5π=12y reveals that the ellipsoid
migrates toward the wall of microfluidic channel.
We also compare the experimental τ with the prediction

from the simple theory in Sec. III for different values ofα and
S, as shown in Fig. 6. In determining the value of S in the
experiment, we assume that the particles are in the middle

plane of the channel (i.e., z ¼ 0), and we evaluate the shear
rate based on the undisturbed velocity at the average position
of the particle centroid. This evaluation is due to the fact that
the particle centroid oscillates in the y direction, and the
channel flow thus has a varying shear rate. In addition, we
use rp ¼ 4 in the numerical calculations, while, in the
experiments, rp displays some variation. Despite these
assumptions and approximations, the experimental data
are in good agreement with the theoretical prediction.
Figure 6 further demonstrates that the direction of the
magnetic field, α, dictates the relation between τ and 0.5,
while the relative strength of the magnetic field, S, affects
the value of τ. In other words, α and S control the direction
and the speed of the lateral migration of the ellipsoidal
particles, respectively.While our simple theoretical model is
able to predict the migration direction, a three-dimensional
numerical approach would be required to account for the
particle-fluid and particle-wall hydrodynamic interactions
in order to calculate the particle-migration speed.

B. Shape-based separation of microparticles

With a basic understanding of the physical principle of
the shape-dependent migration, we apply it to separating
the microparticles by shape. According to Fig. 4, there
exists a magnetic-field direction αmax that can achieve a
maximum τmax and may cause the fastest migration.
However, this angle αmax depends on both rp and S and
is difficult to determine. It is observed that α ¼ 0 always
leads to τ0 > 0.5, and that τ0 is only marginally smaller
than τmax. Thus, we use a perpendicular magnetic field
(H0 ≈ 35000 A=m, α ¼ 0) to investigate the shape-based
migration and separation.
We demonstrate the separation of ellipsoids from

spheres. The ellipsoidal (rp ≈ 4.0) and spherical particles
have the same volume but different shapes, as shown in
Figs. 7(a1) and 7(a2). In case 1, a mixture of magnetic
spherical and ellipsoidal particles (χp ≈ 0.26) is injected
from inlet 2 at a flow rate Q2 ¼ 0.2 μl=min, and the buffer
flow of a 40-wt % aqueous-glycerol solution (χf ¼ 0) is
injected from inlet 1 at a flow rate Q1 ¼ 1.0 μl=min, as
shown in Fig. 2(a). At the end of the channel, the ellipsoidal
particles migrate toward the centerline, while spherical
particle remain at similar initial positions. The correspond-
ing probability density functions (PDFs) of particle dis-
tribution in Figs. 7(b1) and 7(b2) reveal a clear separation
of different-shaped particles.
The shape-dependent migration applies to both mag-

netic and nonmagnetic microparticles. This is because
magnetic torques will arise as long as the ellipsoidal
particle and the fluid have different magnetic susceptibil-
ities according to Eq. (2), and similar asymmetrical
particle rotations (see Appendix C) and net lift forces
and migration will result. In case 2, we demonstrate the
lateral migration of nonmagnetic ellipsoidal particles
(χp ¼ 0) in an aqueous ferrofluid (EMG 408 Ferrotec,

Experiment:

Lines: numerical

0
5 12
3 4

4

125

0

3

FIG. 6. Comparison of the experimentally measured τ and the
theoretical prediction with different S and α values. The symbols
are experimental measurements, and the solid lines are calculated
according to Eq. (9).
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diluted with water at 1∶1; initial susceptibility, χf ¼ 0.25).
Comparing the particle distributions at the inlet and the
outlet in Figs. 7(c1), 7(c2), and 7(d), we observe that
the ellipsoidal particles migrate toward the center of
the microfluidic channel, similar to magnetic particles
suspended in a nonmagnetic fluid.

V. CONCLUSION

In this paper, we present a simple, effective, and tunable
technique to control the lateral migration of ellipsoidal
microparticles by combining microhydrodynamic flows
with a uniform magnetic field. The technique uses magneti-
cally induced torques to alter the symmetry of the particle
rotation—and thereby the lateral migration. Theoretical
analysis shows that the direction and the strength of the
magnetic fields directly affects the degree of rotational
asymmetry. Specifically, the direction of the magnetic field
determines whether it takes a longer or shorter time when the
particles rotate in the first half period of the rotation. The
relative strength of the magnetic field to the flow determines
the extent of such rotational asymmetry. The particle
rotation, in turn, influences the net lift force and the lateral
migration velocity. We demonstrate the shape-based sepa-
ration of microparticles by using the presented mechanism.
The shape-dependent migration applies to both magnetic
and nonmagnetic particles as long as the particle and
the suspending fluid have different magnetic susceptibil-
ities. The proposed technique thus provides a general

mechanism for the separation of microparticles—e.g.,
various bioparticles—by shape, and it has great potential
for various biological and biomedical applications.
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APPENDIX A: STABILITY
OF STEADY-STATE ANGLES

Defining a dimensionless total angular velocity
Ωc ¼ ωc=_γ, we have ðdωc=dϕÞ ¼ _γðdΩc=dϕÞ, with

dΩc

dϕ
¼ − sin ð2ϕÞðrp2 − 1Þ − 2S cos ð2ϕ − 2αÞ

ðrp2 þ 1Þ : ðA1Þ

Substituting ϕs
�, we numerically analyze whether their

values are negative or positive. A sample evaluation is
shown in Fig. (8), where we set rp ¼ 4, α ∈ ½0; π�, and
S ∈ ½0; 20�. For S > Scr, it is observed that ½dωc=dϕ�jϕs

þ
is always negative; thus, ϕsþ is the stable steady angle.
The other solution, ϕs

−, is unstable due to ½dωc=dϕ�jϕs
−
> 0.

(a1)

s m

m

m m m

m25

25

( )25

25

− − − − − − − − − − −− − − −

( )

( ) )( m

Inlet
Inlet
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(c1) (d)
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FIG. 7. Separation of ellipsoidal particles from a mixture. (a1),(a2) Superimposed images of the magnetic spheric and ellipsoidal
particles at the inlet and the outlet of the microfluidic channel, respectively; (b1),(b2) PDFs of the particle distributions. (c1),(c2)
Superimposed images of the nonmagnetic ellipsoidal particles suspended in a ferrofluid at the inlet and the outlet, respectively. (d) PDFs
of the particle distributions corresponding to (c1) and (c2). The magnetic intensity of the uniform magnetic field is H0 ≈ 35000 A=m
and α ¼ 0. The width of the microfluidic channel is wc ¼ 50 μm.

FIG. 8. Three-dimensional
graphs of ½dωc=dϕ�jϕs

(a) for ϕsþ and (b) for ϕs
−. A

particle aspect ratio of rp ¼ 4

is used in the numerical
evaluation.
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APPENDIX B: NUMERICAL ANALYSIS OF
A PARTICLE’S LATERAL VELOCITY

The particle transport in a confined microchannel is
inherently complex due to the finite size of the particle and
its nonspherical shape. Here, we use numerical calculations
to understand the effect of parameter τ (or α) on the net
lateral migration over one period of rotation. To be
consistent with our theoretical analysis, we consider an
ellipsoidal particle transported in a simple shear flow
bounded by a single wall.
Assuming negligible particle inertia and low-Reynolds-

number flows, we decompose the dynamic problem of
particle transport into four steady-state problems:
(i) uf ≠ 0, ωp ¼ 0, up ¼ 0, vp ¼ 0; (ii) uf ¼ 0, ωp ≠ 0,
up ¼ 0, vp ¼ 0; (iii) uf ¼ 0, ωp ¼ 0, up ≠ 0, vp ¼ 0; and
(iv) uf ¼ 0, ωp ¼ 0, up ¼ 0, vp ≠ 0, as shown in Fig. 9.
Similar approaches have been used previously to study lift
forces on nonspherical particles in simple shear flows [42]
and spherical microparticles in rectangular microchannels
[20]. For each subproblem, the particle will experience lift
(Fy) and drag (Fx) forces and torque (Tz), and we define lift
CL, drag CD, and torque CT coefficients as shown in
Table I. The coefficients CL, CD, and CT are calculated
with the finite-element-method software package COMSOL

MULTIPHYSICS by fixing the particle centroid at (x0, y0, z0)
while varying the particle orientation ϕ from 0 to π.
Because of the small particle Reynolds number, the

particle motion can be approximated as quasisteady; there-
fore, the total force and torque are zero. From Eqs. (2),
(4), and (5), the magnetic torque can be expressed as
Tmz ¼ − 16

3
fSπab2η_γ=½2r2pð1 − AÞ þ A�g sinð2ϕ − 2αÞ. In

the simulations, we use y0 ¼ 10 μm, a ¼ 8.82 μm,
b ¼ c ¼ 2.21 μm, and a simple shear flow uf ¼ _γy, with
_γ ¼ 500 1=s. We use a constant S ¼ 1 and three different
α values (0, 5π=12, and 3π=4). The corresponding values
of τ are 0.58, 0.41, and 0.5, respectively. With the pre-
scribed flow velocity uf and magnetic torque Tmz, we can
determine ωp, up, and vp such that

P
4
i¼1 Fxi ¼ 0,P

4
i¼1 Fyi ¼ 0, and

P
4
i¼1 Tzi þ Tmz ¼ 0. We also study

the case of S ¼ 0, which corresponds to zero magnetic field
and τ ¼ 0.5. Figure 9 shows the lateral velocity vp over one

rotational period, and the net shaded area (
R Tc
0 vpdt) thus

represents the net migration of the particle. As shown in
Fig. 9, the net migration direction is in good agreement
with our hypothesis: (i)

R Tc
0 vpdt > 0, i.e., a net lateral

migration toward the channel center when τ > 0.5, in
Fig. 9(b); (ii)

R Tc
0 vpdt < 0, i.e., toward the channel wall

(a)
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1 0

m
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FIG. 9. Lateral migration velocity over one
rotational period. (a) S ¼ 0. (b) S ¼ 1, α ¼ 0.
(c) S ¼ 1, α ¼ 5π=12. (d) S ¼ 1; α ¼ 3π=4.

TABLE I. Definition of lift, drag, and torque coefficients.

CD CL CT

(i) CD1 ¼ ðFx1=3πηufdpÞ CL1 ¼ ðFy1=3πηufdpÞ CT1 ¼ ðTz1=2πηufd2pÞ
(ii) CD2 ¼ ðFx2=3πηωpd2pÞ CL2 ¼ ðFy2=3πηωpd2pÞ CT2 ¼ ðTz2=2πηωpd3pÞ
(iii) CD3 ¼ ðFx3=3πηupdpÞ CL3 ¼ ðFy3=3πηupdpÞ CT3 ¼ ðTz3=2πηupd2pÞ
(iv) CD4 ¼ ðFx4=3πηvpdpÞ CL4 ¼ ðFy4=3πηvpdpÞ CT4 ¼ ðTz4=2πηvpd2pÞ
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when τ < 0.5, in Fig. 9(c); and (iii)
R Tc
0 vpdt≊0, i.e., a

negligible lateral migration when τ ¼ 0.5, in Figs. 9(a)
and 9(d). Although our numerical model is a simplified
representation of the complex particle dynamics in con-
fined microchannels, it qualitatively explains the effect on
the magnetic field and τ on the direction of the lateral
migration, as observed in the experiments.

APPENDIX C: ROTATIONAL DYNAMICS
OF NONMAGNETIC PARTICLES

IN A FERROFLUID

Additionally, we experimentally measure particle rota-
tional dynamics of a nonmagnetic particle (χp ¼ 0) in a
50% diluted ferrofluid (EMG 408, Ferrotec), which has an
initial magnetic susceptibility χf ≈ 0.25. The total flow rate
is Qt ¼ 1.2 μl=min, and the applied magnetic field is
H0 ≈ 35000 A=m. As can be seen in Fig. 10, the magnetic
field influences the rotational dynamics of nonmagnetic
particle in a manner identical to paramagnetic particles. The
asymmetric particle rotation thus results in a similar shape-
dependent migration for any particle and fluid pair that has
differing magnetic susceptibilities.
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