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We control the diffusion of light in a disordered photonic waveguide by modulating the waveguide
geometry. In a single waveguide of varying cross-section, the diffusion coefficient changes
spatially in two dimensions due to localization effects. The intensity distribution inside the
waveguide agrees with the prediction of the self-consistent theory of localization. Our work shows
that wave diffusion can be efficiently manipulated without modifying the structural disorder.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891757]

The concept of diffusion is widely used to study the
propagation of light through multiple scattering media such
as clouds, colloidal solutions, paint, and biological tissues.1–4

Diffusion, however, is an approximation as it neglects wave
interference effects.5 Most of the scattered waves follow
independent paths and have uncorrelated phases, so their
interference is averaged out. However, a wave may return to
a position it has previously visited after multiple scattering,
and there always exists the time-reversed path which yields
identical phase delay. Constructive interference between the
waves traveling in the time-reversed paths increases the
energy density at the original position, thus suppressing dif-
fusion6 and eventually leading to localization.7 This effect
has been accounted for by a renormalized diffusion coeffi-
cient D in the self-consistent theory of localization.8,9 The
amount of renormalization depends on the return probability,
which is determined by the size of a random medium as well
as the position inside.10–13 We recently reported a direct
observation of the position-dependent diffusion coefficient in
disordered waveguides.14 By changing the waveguide length
and width, we tuned the diffusion coefficient by varying the
strength of wave interference. However, the width of each
waveguide was kept constant, and we switched between the
waveguides to control diffusion.

In this Letter, we fabricate disordered waveguides with
a variable cross-section and thus achieve control of light
transport in the same system. In these structures that we have
designed, it is necessary to account for spatial variation of
diffusion coefficient D in two dimensions (2D) due to the
modulation of the waveguide width. Experimentally we fab-
ricate a random array of air holes in a waveguide geometry
on a silicon wafer, and probe light propagation inside the
2D structure from the third dimension. The measured spatial
distribution of light intensity inside the disordered wave-
guide agrees well with the prediction of the self-consistent
theory of localization.11,13 Instead of changing the degree of
disorder, we demonstrate that the wave diffusion can be
manipulated by changing the geometry (cross-section) of the
random waveguide nanostructures.

The proposed approach of using geometry to control the
interference effects in multiple scattering media is of both a

fundamental and a practical importance. For example, coher-
ent control of the total transmission of light through three
dimensional random media was demonstrated by shaping the
wave front of the input light.15 The degree of such coherent
control is limited by the number of modes that can be con-
trolled. For 2D planar waveguide structures, the overall ge-
ometry can provide additional degree of freedom and can be
used along with wavefront shaping techniques to more effi-
ciently control the total transmission through the random
media. Understanding the effect of geometry on transport
through disordered media is also important to explore new
functionalities of on-chip photonic devices using random
media. For example, a two-dimensional disordered media
has been proposed to provide efficient broad band coupling
of light to a thin film at a wide range of incident angles for
solar cell applications.16 Our experiments demonstrate that
for fixed disordered structures, coherent control of light dif-
fusion in the plane of the film is possible simply by varying
the geometry. In addition, on-chip multiple scattering media
have also been recently applied to spectrometer applica-
tions.17 Studying the effect of geometry of the random struc-
ture is important to enhance the sensitivity and resolution of
such devices.

The disordered waveguides in this experiment were fab-
ricated with a silicon-on-insulator (SOI) wafer where the
thickness of the silicon layer and the buried oxide were
220 nm and 3 lm, respectively. The patterns were written by
electron beam lithography and etched in an inductively
coupled-plasma (ICP) reactive-ion-etcher (RIE). Figure 1 is
a scanning electron microscope (SEM) image of a fabricated
sample. The waveguide contained a 2D random array of air
holes. The hole diameters were 120 nm, and the average
(center-to-center) distance of neighboring holes was about
385 nm. The total length L of the random waveguide was
120 lm, and the waveguide width W was changed from
W1¼ 40 lm to W2¼ 5 lm via a tapered region. The lengths
of wider (W1) and narrower (W2) sections were L1¼ 52 lm
and L2¼ 58 lm, respectively. The tapered section was 10 lm
long, with a tapering angle of 60". The waveguide walls
were made of a triangular lattice of air holes (lattice constant
440 nm, hole radius 154 nm) that produced a complete 2D
photonic bandgap.

In the optical experiment, we used a lensed fiber to
couple monochromatic light (wavelength# 1500 nm) from a
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tunable CW laser source (HP 8168F) into the waveguide
[Fig. 2(a)]. The polarization of input light was transverse-
electric (TE) (electric field parallel to the waveguide plane).
Light was scattered by the air holes inside the waveguide
and underwent diffusion. The waveguide walls provided in-
plane confinement of the scattered light. However, some of
the light was scattered out of the waveguide plane. This
leakage allowed us to observe light propagation inside the
disordered waveguide from the vertical direction. The spatial
distribution of light intensity across the waveguide was
projected by a 50$ objective lens [numerical aperture
(NA)¼ 0.42] onto an InGaAs camera (Xeva 1.7–320).
Figure 2(b) shows a typical optical image from which we
extracted the 2D intensity distribution inside the waveguide
I(y,z).

The ensemble averaging was done over three random
configurations of air holes and 25 input wavelengths equally
spaced between 1500 nm and 1510 nm. The wavelength
spacing was chosen to produce different intensity

distributions. Further averaging was done by slightly moving
the input beam position along the transverse y direction.
Nevertheless, the front surface of the random structures was
always uniformly illuminated by the incident light.

The relevant parameters for light propagation in the dis-
ordered waveguide are the transport mean free path ‘ and the
diffusive dissipation length na. The transport mean free path
‘ depends on the size and density of the air holes. The dissi-
pation mostly comes from out-of-plane scattering as the
silicon absorption at the probe wavelength is negligible. As
shown in our previous work,14 this vertical loss of light can
be treated as dissipation (or absorption) and described by the
characteristic length na ¼

ffiffiffiffiffiffiffiffiffiffi
D0sa
p

, where sa is the ballistic
dissipation time and D0 is the diffusion coefficient without
localization corrections.

There are three main advantages of using the planar
waveguide geometry. First, it allows a precise fabrication of
the designed structure so that the parameters such as the
transport mean free path can be accurately controlled.
Second, we can easily monitor the in-plane diffusion by col-
lecting the out-of-the-plane scattered light. Third, the local-
ization length n can be tuned by changing the waveguide
width W, because n ¼ ðp=2ÞN‘, where N ¼ 2W=ðk=neÞ is
the number of propagating modes in the waveguide, which is
proportional to W. By varying the width of a single wave-
guide, we adjust the strength of the localization effect along
the waveguide. The localization length in the wider section
of the waveguide (W1¼ 40 lm) is 8 times longer than that in
the narrower section (W2¼ 5 lm). Hence, the suppression of
diffusion by wave interference is enhanced approximately 8
times in the narrower section of the waveguide.

For a quantitative description of light transport in a
random waveguide of variable width, we used the self-
consistent theory of localization to calculate the diffusion
coefficient D(y,z) inside the waveguide. The renormalization
of D depends on the return probability, which is position
dependent.10–12 The maximum renormalization happens
inside the random media at a location where the return prob-
ability is the highest, and the renormalization is lowest near
the open boundaries of the random media. As shown below,
the return probability takes the maximum value in the narrow
portion of the structure and not at the geometrical center as
in waveguides with a uniform cross-section. The renormali-
zation of the diffusion coefficient also depends on the
amount of dissipation, which suppresses feedback from long
propagation paths and sets an effective system size beyond
which the wave will not return.18,19

In order to compare the experimental results with the
self-consistent theory, we computed D(y,z) using the com-
mercial package Comsol Multiphysics after setting the
values of the transport mean free path ‘ and the diffusive dis-
sipation length na. First, the return probability was calculated
at every point in the waveguide.13 This was done by moving
a point source throughout the structure and by calculating
the light intensity at the source for each source position. This
intensity was taken as the return probability which was then
used to renormalize D(y,z). The modified D(y,z) was then
used to recalculate the return probability. Several iterations
of this procedure were performed until the changes in D(y,z)
between iterations became small enough to be negligible.

FIG. 1. Top-view SEM image of a quasi-2D disordered photonic waveguide.
Light is injected from the left end of the waveguide and incident onto the
random array of air holes. The waveguide wall is made of a triangle lattice
of air holes which forms a 2D photonic bandgap to confine light inside the
waveguide. The width of the random waveguide is changed gradually from
40 lm to 5 lm through a tapered region.

FIG. 2. (a) A schematic of the experimental setup. A lensed fiber couples
the light to the structure and another 50$ objective lens (NA¼ 0.42) collects
the light scattered by the air holes out of the waveguide plane and projects
onto a camera. (b) Optical image of the intensity of light scattered out-of-
plane from the disordered waveguide. The wavelength of the probe light is
1505 nm.

041104-2 Sarma et al. Appl. Phys. Lett. 105, 041104 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
131.151.60.15 On: Mon, 28 Jul 2014 15:45:29



Once we obtained the final value of D(y,z), it was used to
calculate the intensity I(y,z) inside the waveguide.

The calculation of D(y,z) was repeated for various com-
binations of ‘ and na until the calculated I(y,z) matched the
measured intensity distribution. The parameters that gave the
best agreement were ‘¼ 2.9 lm and na¼ 35 lm. Figure 3(a)
plots the calculated return probability, which is greatly
enhanced by the stronger transverse confinement (along the y
direction) in the narrower section of the waveguide.
Consequently, the renormalized diffusion coefficient D(y,z),
shown in Fig. 3(b), reaches the minimum value close to the
middle of the narrower section. Note that in the tapered
region, D changes not only along z but also along y. The
smaller D near the boundary is attributed to the enhancement
of return probability due to reflection from the photonic crys-
tal wall. Figure 3(c) shows the spatial distribution of in-plane
diffusive light intensity I(y,z) inside the waveguide.

From the experimentally measured I(y,z), we computed

the cross-section integrated intensity ItðzÞ ¼
ÐWðzÞ=2
'WðzÞ=2 Iðy; zÞdy

and the cross-section averaged intensity IvðzÞ ¼ ItðzÞ=WðzÞ.
The former quantity is proportional to the z-component of
total energy flux through the cross-section of the waveguide,
while the latter quantity, Iv(z), is related to the energy density.

As shown in Fig. 4(a), It(z) decays more slowly with z in
the wider section of the waveguide than in the narrower one.
The narrowing of the waveguide width leads to a sharp drop
of It (energy flux), as part of the diffusive light is reflected
back. The dashed curve in Fig. 4(a) is the calculated It(z)
using self-consistent theory, which agrees well with the ex-
perimental data. The inset of Fig. 4(a) plots the experimental
data of Itð~zÞ for the wider (dashed line) and narrower

sections (solid line) on top of each other. The maximum
intensity of both cases are normalized to 1. For the wider
section, ~z ¼ z=L1 and for the narrower section, ~z
¼ ðz' ðL1 þ 10ÞÞ=L2. We can clearly see the difference in
the exponential decay (slope) of Itð~zÞ for the two cases. This
difference can be attributed to two factors: (i) reflection from
the boundary of the tapered region and (ii) enhanced local-
ization effect in the narrower section of waveguide.
Reflection only modifies the decay in the wider section of
the waveguide. However, this modification is only dominant
towards the end of the wider section as can be seen by a flat-
tening of It(z) near z¼ 50. From the experimental data (see
inset of Fig. 4(a)), we observe that the decays of the wider
and narrower section are different from the beginning (i.e.,
~z # 0:1). This is a clear indication of the finite size effects or
enhanced localization effect in the narrow section of the
waveguide. In the absence of localization effects, the inten-
sity decays for both sections will be similar till at least
~z # 0:5, beyond which the decay in the wider section will be
slightly reduced due to reflection from the boundary of the
tapered section.

Figure 4(b) plots the measured Iv(z) together with the
calculated one. Similar to previous case, Iv(z) also decays
more slowly with z in the wider section of the waveguide
than in the narrower one. Again we see a good agreement
except at z# 60 lm. The optical image [Fig. 2(b)] reveals
that near the photonic crystal wall of the tapered section, the
abrupt backward scattering leads to the formation of a stand-
ing wave, thus the intensity is enhanced compared to the

FIG. 3. (a) Calculated return probability in the disordered waveguide shown
in Fig. 1. ‘ ¼ 2:9lm and na ¼ 35lm. (b) 2D renormalized position depend-
ent diffusion coefficient D(y,z)/D0 for the same structure as in (a). (c)
Intensity distribution I(y,z)/I0 inside the random structure obtained from
D(y,z)/D0 in (b).

FIG. 4. (a) Comparison of the measured cross-section integrated intensity
It(z) of the entire structure (solid blue line) to numerical calculations based
on self-consistent theory (dashed red line). The inset plots the measured
Itð~zÞ for both the wider (dashed line) and narrower (solid line) sections of
the waveguide on top of each other. ~z ¼ z=L1 for the wide section and
~z ¼ ðz' ðL1 þ 10ÞÞ=L2 for the narrow section. In the inset, for both cases,
Itð~zÞ is normalized to 1 to demonstrate the clear difference in the exponential
decay rate (slope). (b) Measured cross-section averaged intensity Iv(z) (solid
blue line) in comparison with the results of self consistent theory (dashed
red line). The vertical dotted lines in (a) and (b) marks the starting point and
the end point of the tapered region.
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diffusive prediction. The spatial extent of this effect is deter-
mined by the transport mean free path ‘ beyond which the
direction of the reflected wave is randomized. The inherent
inability of a diffusive description to describe transport on
scales shorter than ‘ explains the deviation of the experimen-
tally measured intensity from the theoretical prediction, as
exhibited in Fig. 4(b) by a small bump at z# 60 lm.

In conclusion, we demonstrated an effective way of
manipulating light diffusion in a disordered photonic wave-
guide. Instead of changing the degree of structural disorder,
we varied the waveguide geometry (its cross-section). By
modulating the width in a single waveguide, we manipulated
the interference of scattered light and made the diffusion
coefficient vary spatially in two dimensions. We measured
the intensity distribution inside the quasi-2D random struc-
tures by probing from the third dimension and the experi-
mental results agreed well with the predictions of the
self-consistent theory of localization. Although, the experi-
ments in this work were done with light, the outlined
approach to control diffusion is also applicable to other types
of waves, such as acoustic waves, microwaves, and the de
Broglie waves of electrons.
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